
A raw ANOVA table is shown in Table 2, 
followed by the detailed ANOVA calcula-
tions. Finally, the completed ANOVA is 
shown in Table 3.

Descriptive Statistics
Descriptive statistics, such as the mean and 
standard deviation, summarize a set of data 
[4, 5].

Mean of A: 1 + 2 + 3 / 3 = 2
Mean of B: 4 + 5 + 6 / 3 = 5
Mean of C: 7 + 8 + 9 / 3 = 8
Grand Mean: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 
8 + 9 / 9 = 5

Degrees of Freedom
Degrees of freedom (n – 1) are the number of 
independent values that a statistical analysis 
can estimate; more specifically, they define 
how many units within a set can be selected 
without constraints. Let’s say we have three 
numbers that add up to 12. There are two 
degrees of freedom (3 – 1 = 2). After picking 
the first two numbers, there is no freedom to 
choose the last number; it is "determined" by 
the other two numbers. The first and second 
numbers can be any positive or negative 
numbers. For example, if the first number is 
3, the second number is 7, the third number 
must be 2 [4, 5].

Factor: 3 – 1 = 2
Error: 8 – 2 = 6
Total: 9 – 1 = 8
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Introduction
The two-sample t-test is used to determine if two 
population means are equal. A typical applica-
tion tests if a new process or treatment is superi-
or to a current one. But what if we have three or 
more means we want to test? The t-test is inap-
propriate for this analysis. 

For example, a young engineer is testing the 
mean brightener concentration in her four acid 
copper pulse plating tanks (A, B, C, D). There 
are six pairwise comparisons: AB, AC, AD, BC, 
BD, CD. Using the t-test, if the probability of 
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correctly accepting the null hypothesis for each 
test is 1 – α = 0.95, then the probability of 
correctly accepting the null hypothesis for all six 
tests is (0.95)6 = 0.74, or 74%. In other words, 1 – 
0.74 = 26% chance of committing a Type I error. 
Recall that a Type I error occurs when we reject 
a true null hypothesis (no statistical difference) 
and claim that there is a statistical difference. The 
multiple comparisons cause a significant increase 
in Type I errors. The appropriate procedure for 
testing the equality of several means is the analy-
sis of variance [1].

The Analysis of Variance
The analysis of variance (ANOVA) was invent-
ed by British statistician R.A. Fisher in 1918. 
While the t-test was limited to comparisons 
between two groups, the ANOVA was designed 
to allow for comparisons between multiple 
groups using a single test. The ANOVA gained 
popularity after being included in Fisher’s text, 
Statistical Methods for Research Workers, 
in 1925.

Today, the ANOVA is the most useful tech-
nique in the field of statistical inference. The 
ANOVA is a general linear statistical model 
technique used to test the hypothesis that the 
means of two or more groups are equal. The 
linear function refers to the mathematical 
relationship between the model parameters 
and the dependent variable (y). Specifically, 

the response variable (y) is a linear function of 
the model parameters (the average outcome is 
linearly related to each term in the model) [2].

There are two types of assumptions with the 
ANOVA model. The first assumption is about 
the form of the model. These initial assump-
tions pertain to choosing the correct predictors 
(they are related to the response variable), and 
the average outcome is linearly related to each 
term in the model [2, 3]. 

The second assumption is about the distribu-
tion of the errors (residuals). It is generally 
assumed that the sampled populations are 
approximately normally distributed, the obser-
vations are independent, the variances are 
equal across groups (homogeneity), and the 
observations have been randomly sampled. 
The ANOVA technique is robust to minor 
deviations from normality, independence, and 
homogeneity. You can get clues about whether 
most of these assumptions will be met before 
building the model. But we typically build the 
model first and then verify the assumptions. 
Suppose you've done the foundational work in 
the early steps. In that case, testing assump-
tions is about looking for minor deviations, not 
major transgressions [2, 3].

The ANOVA tests the null hypothesis (H0) 
that two or more population means are equal 
versus the alternative hypothesis (H1) that at 
least one mean is different. Using the formal 
notation of statistical hypotheses, for k means 
we write:

H0: μ1 = μ2 =…= μk

H1: At least one mean is not equal 
to the others

In statistics, the alternative hypothesis can be 
either one-tailed or two-tailed. The one-tailed 
tests are for either inferiority or superiority, 
while the two-tailed tests are for parity (not 
equal). The ANOVA is a bit more complex. 

With ANOVA, we test "not all means are 
equal.” Suppose we are comparing three 
groups; the alternative hypothesis says that at 
least one of the following is true:

Mean 1 is not equal to mean 2.
Mean 1 is not equal to mean 3.
Mean 2 is not equal to mean 3.

As implied, the ANOVA analyzes variances to 
test means. But why analyze variances to derive 
conclusions about the means? Remember that 
“means are different.” And the larger the differ-
ences between the means, the more variation 
there is present. The ANOVA assesses the 
amount of variability between the group means 
in the context of the variation within groups to 
determine whether the mean differences are 
statistically significant. When the ANOVA 
signals statistically significant results (p-value 
< 0.05), indicating that not all means are equal, 
you’ll need to use post hoc tests to complete 
pairwise comparisons.

Let’s look at how the ANOVA works by using 
an example. Table 1 shows three factors (A, B, 
C), with three measured responses per factor, 
along with descriptive statistics. The data is 
fictitious and is presented for explanatory 
purposes only.

Sum of Squares
The sum of the squared deviations of scores 
from their mean. The total sum of squares 
helps express the total variation that can be 
attributed to various factors. The adjusted 
sum of squares is the unique portion of the 
sum of squares explained by a factor, given all 
other factors in the model, regardless of the 
order they were entered into the model [4, 5].

Factor (between the factors): 3 * [(2 – 5)2  + 
(5 – 5)2  + (8 – 5)2] = 54. (Note: “3” is the 
number of levels within the factors, not the 
number of factors, and “5” is the grand mean.)

Error (within the factors):
SS of A: (1 – 2)2 + (2 – 2)2 + (3 - 2)2 = 2
SS of B: (4 – 5)2 + (5 – 5)2 + (6 – 5)2 = 2
SS of C: (7 – 8)2 + (8 – 8)2 + (9 – 8)2 = 2
Error: 2 + 2 + 2 = 6
Total: 54 + 6 = 60

Mean Squares
A term used in the analysis of variance to refer 
to the variance in the data due to a particular 
source of variation. Converting the sum of 
squares into mean squares by dividing by the 
degrees of freedom lets you compare these 
ratios and determine whether there is a 

significant difference. The larger this ratio is, 
the greater the factor's impact on the outcome 
[4, 5].

Factor: 54 / 2 = 27
Error: 6 / 6 = 1

F-value
Calculated by dividing the factor mean square 
by the error mean square. As an alternative to 
calculating the p-value, F-critical can be used. 
The F-critical is found in the F-table, using the 
degrees of freedom for the factor and error, 
F(2, 6). An F-value greater than F-critical 
indicates statistical significance [4, 5].

F-value: 27 / 1 = 27
F-critical: 5.14

P-value
The P-value indicates the probability of 
observing the given F-value (or a more extreme 
value) under the assumption that the null 
hypothesis is true. It is calculated from the 
F-distribution, F(2, 6), using the F-value [4, 5].

F-value: 27
Probability (p-value) of X ≥ 27, F(2, 6) = 0.001

The ANOVA signals statistically significant 
results (P-value < 0.05), indicating that not all 
means are equal. But before action is taken, 
the model needs to be validated by examining 
the residuals. If all looks good, a post hoc test 
needs to be conducted for all pairwise com-
parisons. Finally, a review of the five require-
ments for data acceptance is required.

Model Validation
The ANOVA work does not stop when the 
model is fit. As discussed previously, the second 
assumption is about the distribution of the resid-
uals. If your model is not adequate, it will incor-
rectly represent your data. For example, incor-
rect F- and P-values. Models can be adversely 
affected by as few as one or two points [4].

To validate the model, the assumptions about 
the distribution of the residuals must be met. 
These assumptions include that the residuals are 
normally distributed, have independence of 
observations (no autocorrelation), and have 
homogeneity of variances (equal variances 
across groups). Residuals are elements of varia-
tion unexplained by the model. Since they are a 
form of error, the same general principles apply 
to the group of residuals as would apply to errors 
in general: one expects them to be normal and 
independently distributed (NID) with a mean of 
zero and constant variance NID(0, σ2). Depar-
tures from these assumptions usually mean that 
the residuals contain unaccounted-for informa-
tion. Validating the model helps ensure the 
conclusions drawn are correct, unambiguous, 
and defensible [1, 3].

Normality
Virtually any graph suitable for displaying the 
distribution of a set of data is ideal for judging 
the normality of the distribution of a group of 
residuals. The two most common plots and 
graphs are the normal probability plot and the 
histogram [3, 4].  

Interpretation: The normal probability plot of 
the residuals should approximately follow a 
straight line, see Figure 1. The histogram helps 
identify whether the data are skewed or contain 
outliers, as shown in Figure 2. With histograms, 
it’s best to have at least 50 data points (n ≥ 50) to 
make interpretation robust [4].

Independence
Suppose the order of the observations in a data 
table represents the order of execution of each 
test. In that case, a plot of the residuals of those 
observations versus the time order of the 
observations will test for lack of independence. 
For example, drift in equipment will produce 
models with autocorrelation. [3, 4]. 

Interpretation: Independent residuals show no 
trends or patterns when displayed in time 
order. Patterns in the data points indicate that 
residuals near each other may be correlated 
and thus not independent. The residuals on the 
plot should fall randomly around the center 
line with a mean of zero and constant variance 
NID(0, σ2) with no recognizable patterns or 
trends in the points, see Figure 3 [4].

Homogeneity
Plotting residuals versus the value of a fitted 
response should produce a distribution of 
points scattered randomly about zero, NID
(0, σ2), regardless of the size of the fitted 
value. Quite commonly, however, residual 
values may increase as the size of the fitted 
value increases. When this happens, the 
residual cloud becomes "funnel-shaped" with 
the larger end toward larger fitted values; that 
is, the residuals have larger and larger scatter 
as the value of the response increases [3, 4]. 

Interpretation: Ideally, the points should fall 
randomly around the center line with a mean 
of zero and constant variance NID(0, σ2) with 
no recognizable patterns, trends, or outliers 
in the points, see Figure 4 [4].

Post-hoc Testing
Suppose the ANOVA indicates a statistical 
difference (p-value < 0.05), and the model 
assumptions have been validated. In that case, 
post-hoc tests are used to identify which 
specific groups differ from each other. Stan-
dard post-hoc tests include Tukey, Fisher, 
Dunnett, and Hsu MCB. The Tukey and 
Fisher tests compare all pairs of groups. The 
Dunnett test compares the treatment groups 
to a control group. In contrast, the Hsu MCB 
test compares each group to the group with 
either the largest or the smallest mean (cho-
sen by the process engineer). The process 
engineer must consider individual and family 
error rates in conjunction with post-hoc 
testing [4].

The individual error rate is the maximum 
probability that one or more comparisons will 
incorrectly conclude that the observed differ-
ence is significantly different from the null 
hypothesis. It is equivalent to the alpha level 
selected (typically 0.05) for the hypothesis 
test. The family error rate is the maximum 
probability that a procedure consisting of 
more than one comparison will incorrectly 
conclude that at least one of the observed 
differences is significantly different from the 
null hypothesis. The family error rate is based 
on both the individual error rate and the 
number of comparisons. It is essential to 
consider the family error rate when making 
multiple comparisons because your chances 
of committing a Type I error for a series of 
comparisons are greater than the error rate 
for any one comparison alone [4]. 

The Tukey test is a robust, widely used, and 
popular post-hoc test. It compares all pairs of 
groups while controlling the simultaneous 
confidence level (SCL). The SCL is the 

percentage of times that a group of confi-
dence intervals will all include the true popu-
lation parameters or true differences between 
factor levels if the study were repeated multi-
ple times. The SCL level is based on both the 
individual confidence level and the number of 
confidence intervals. The Tukey family error 
rate is typically controlled at 0.05 (5%). The 
trade-off with Tukey's is the less precise 
confidence intervals and hypothesis tests that 
are less powerful than either Dunnett's or 
Hsu's MCB [4, 6].

Data Acceptance
There are five requirements if conclusions 
drawn from data analysis are to be correct, 
unambiguous, and defensible. These five 
requirements are an equitable sample, stabili-
ty, statistical significance, practical signifi-
cance, and truth. Each of these is discussed 
below.  

Equitable Sample: The sample is representa-
tive of the population. Free from bias and 
confounding. Sample size is sufficient, or 
confirmation runs have been done.

Stability: No unusual conditions when the 
data was collected. No outliers, trends, shifts, 
or non-random patterns. 

Statistically Significant: p-values are real, not 
noise, typically α < 0.05, and residuals are 
normal.

Practical Significance: Is the magnitude of 
difference worthwhile? Does anybody care?

Truth: Can you explain why it is true? Do 
you have a theory? Does the conclusion fit 
with the subject matter knowledge?

A Worked Example
Process characterization is an integral part of 
any continuous improvement program. There 
are many steps in that program for which 
process characterization is required. These 
include instances when we introduce a new 
process or tool for use, as well as when we 
bring a tool or process back online after 
scheduled/unscheduled maintenance, when 
we want to compare tools or processes, when 
we want to check the health of our process 
during the monitoring phase, when we are 
troubleshooting a bad process, or when we 
need to improve a process [3].

A young process engineer is completing a 
process improvement project on her acid 
copper pulse plating tanks, looking to 
improve throwing power. She conducts an 
experiment looking at three different pulse 
recipes. The first pulse recipe (P1) is the 
control (current wave), while recipes P2 and 
P3 are experimental. The test vehicle is an 18” 
x 24” panel with 20:1 aspect ratio holes. The 
engineer plates four panels with each of the 
three pulse recipes and measures the throw-
ing power (Note: the runs are randomized to 
protect against noise variables). The throwing 
power percentages, along with descriptive 
statistics, are shown in Table 4.

The process engineer analyzes the throwing 
power data using an ANOVA. The Recipe 
p-value is less than 0.05, indicating that not 
all means are equal, see Table 5. 

Next, the engineer validates the model by 
examining the residuals. The probability plot 
of the residuals approximately follows a 
straight line. The histogram is ignored due to 
the presence of fewer than 50 data points, 
making interpretation difficult. The residuals 
versus order points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns or trends in the points. The residuals 
versus fit points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns, trends, or outliers in the points. All 
four plots can be seen in Figure 5. The model 
has been validated. The process engineer now 
needs to use a post hoctest to complete pair-
wise comparisons. 

The process engineer decides to use the Tukey 
post hoc test. She uses the grouping informa-
tion table to quickly determine whether the 
mean difference between any pair of groups is 
statistically significant. Groups that do not 
share a letter are significantly different. In 
these results, Table 6 shows that group A 
contains Recipe P3, group B contains Recipe 
P2, and group C contains Recipe P1.

Discussion: The ANOVA model has been built, 
validated, and a post hoc test completed. The 
process engineer concludes that all three 
Recipe means are statistically different; the 
results in the data are unlikely to be explained 
by chance alone. The data acceptance criteria 
has been met: Equitable Sample (18” x 24” 
panel, 20:1 aspect ratio, four test panels), 
Stability (all parameters were in range during 
the testing), Statistical Significance (P-value < 
0.05, and residuals are normal and inde-
pendently distributed with a mean of zero and 
constant variance NID(0, σ2)), Practical Signifi-
cance (36% improvement in throwing power), 
and Truth (significant modifications to the 
pulse waves improve throwing power). Recipe 
P3 has been statistically proven to improve 
throwing power over Recipe P1 by an average 
of 36% (86% – 50%). The process engineer 
concludes her improvement project's data are 
correct, unambiguous, and defensible. She can 
confidently implement the process change.

Conclusions 
The analysis of variance (ANOVA) is over 100 
years old. Today, the ANOVA is the most 
useful technique in the field of statistical infer-
ence. The ANOVA is designed to allow for 
comparisons between multiple groups using a 
single test. The ANOVA work does not stop 
when the model is fit; the model must be 
validated. Validation is accomplished by verify-
ing that the residuals are normally distributed, 
have independence of observations, and have 
homogeneity of variances. When the ANOVA 
indicates a statistical difference, and the model 
assumptions have been validated, a post-hoc 
test is used to identify which specific groups 
differ from each other. The Tukey test is a 
robust, widely used, and popular post-hoc test. 
Finally, data acceptance is based on five 
requirements: equitable sample, stability, 
statistical significance, practical significance, 
and truth. Drawing conclusions from an 
improvement project's data that are correct, 
unambiguous, and defensible is crucial for the 
process engineer. 
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A raw ANOVA table is shown in Table 2, 
followed by the detailed ANOVA calcula-
tions. Finally, the completed ANOVA is 
shown in Table 3.

Descriptive Statistics
Descriptive statistics, such as the mean and 
standard deviation, summarize a set of data 
[4, 5].

Mean of A: 1 + 2 + 3 / 3 = 2
Mean of B: 4 + 5 + 6 / 3 = 5
Mean of C: 7 + 8 + 9 / 3 = 8
Grand Mean: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 
8 + 9 / 9 = 5

Degrees of Freedom
Degrees of freedom (n – 1) are the number of 
independent values that a statistical analysis 
can estimate; more specifically, they define 
how many units within a set can be selected 
without constraints. Let’s say we have three 
numbers that add up to 12. There are two 
degrees of freedom (3 – 1 = 2). After picking 
the first two numbers, there is no freedom to 
choose the last number; it is "determined" by 
the other two numbers. The first and second 
numbers can be any positive or negative 
numbers. For example, if the first number is 
3, the second number is 7, the third number 
must be 2 [4, 5].

Factor: 3 – 1 = 2
Error: 8 – 2 = 6
Total: 9 – 1 = 8
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Introduction
The two-sample t-test is used to determine if two 
population means are equal. A typical applica-
tion tests if a new process or treatment is superi-
or to a current one. But what if we have three or 
more means we want to test? The t-test is inap-
propriate for this analysis. 

For example, a young engineer is testing the 
mean brightener concentration in her four acid 
copper pulse plating tanks (A, B, C, D). There 
are six pairwise comparisons: AB, AC, AD, BC, 
BD, CD. Using the t-test, if the probability of 

correctly accepting the null hypothesis for each 
test is 1 – α = 0.95, then the probability of 
correctly accepting the null hypothesis for all six 
tests is (0.95)6 = 0.74, or 74%. In other words, 1 – 
0.74 = 26% chance of committing a Type I error. 
Recall that a Type I error occurs when we reject 
a true null hypothesis (no statistical difference) 
and claim that there is a statistical difference. The 
multiple comparisons cause a significant increase 
in Type I errors. The appropriate procedure for 
testing the equality of several means is the analy-
sis of variance [1].

The Analysis of Variance
The analysis of variance (ANOVA) was invent-
ed by British statistician R.A. Fisher in 1918. 
While the t-test was limited to comparisons 
between two groups, the ANOVA was designed 
to allow for comparisons between multiple 
groups using a single test. The ANOVA gained 
popularity after being included in Fisher’s text, 
Statistical Methods for Research Workers, 
in 1925.

Today, the ANOVA is the most useful tech-
nique in the field of statistical inference. The 
ANOVA is a general linear statistical model 
technique used to test the hypothesis that the 
means of two or more groups are equal. The 
linear function refers to the mathematical 
relationship between the model parameters 
and the dependent variable (y). Specifically, 

the response variable (y) is a linear function of 
the model parameters (the average outcome is 
linearly related to each term in the model) [2].

There are two types of assumptions with the 
ANOVA model. The first assumption is about 
the form of the model. These initial assump-
tions pertain to choosing the correct predictors 
(they are related to the response variable), and 
the average outcome is linearly related to each 
term in the model [2, 3]. 

The second assumption is about the distribu-
tion of the errors (residuals). It is generally 
assumed that the sampled populations are 
approximately normally distributed, the obser-
vations are independent, the variances are 
equal across groups (homogeneity), and the 
observations have been randomly sampled. 
The ANOVA technique is robust to minor 
deviations from normality, independence, and 
homogeneity. You can get clues about whether 
most of these assumptions will be met before 
building the model. But we typically build the 
model first and then verify the assumptions. 
Suppose you've done the foundational work in 
the early steps. In that case, testing assump-
tions is about looking for minor deviations, not 
major transgressions [2, 3].

The ANOVA tests the null hypothesis (H0) 
that two or more population means are equal 
versus the alternative hypothesis (H1) that at 
least one mean is different. Using the formal 
notation of statistical hypotheses, for k means 
we write:

H0: μ1 = μ2 =…= μk

H1: At least one mean is not equal 
to the others

In statistics, the alternative hypothesis can be 
either one-tailed or two-tailed. The one-tailed 
tests are for either inferiority or superiority, 
while the two-tailed tests are for parity (not 
equal). The ANOVA is a bit more complex. 

With ANOVA, we test "not all means are 
equal.” Suppose we are comparing three 
groups; the alternative hypothesis says that at 
least one of the following is true:

Mean 1 is not equal to mean 2.
Mean 1 is not equal to mean 3.
Mean 2 is not equal to mean 3.

As implied, the ANOVA analyzes variances to 
test means. But why analyze variances to derive 
conclusions about the means? Remember that 
“means are different.” And the larger the differ-
ences between the means, the more variation 
there is present. The ANOVA assesses the 
amount of variability between the group means 
in the context of the variation within groups to 
determine whether the mean differences are 
statistically significant. When the ANOVA 
signals statistically significant results (p-value 
< 0.05), indicating that not all means are equal, 
you’ll need to use post hoc tests to complete 
pairwise comparisons.

Let’s look at how the ANOVA works by using 
an example. Table 1 shows three factors (A, B, 
C), with three measured responses per factor, 
along with descriptive statistics. The data is 
fictitious and is presented for explanatory 
purposes only.

Sum of Squares
The sum of the squared deviations of scores 
from their mean. The total sum of squares 
helps express the total variation that can be 
attributed to various factors. The adjusted 
sum of squares is the unique portion of the 
sum of squares explained by a factor, given all 
other factors in the model, regardless of the 
order they were entered into the model [4, 5].

Factor (between the factors): 3 * [(2 – 5)2  + 
(5 – 5)2  + (8 – 5)2] = 54. (Note: “3” is the 
number of levels within the factors, not the 
number of factors, and “5” is the grand mean.)

Error (within the factors):
SS of A: (1 – 2)2 + (2 – 2)2 + (3 - 2)2 = 2
SS of B: (4 – 5)2 + (5 – 5)2 + (6 – 5)2 = 2
SS of C: (7 – 8)2 + (8 – 8)2 + (9 – 8)2 = 2
Error: 2 + 2 + 2 = 6
Total: 54 + 6 = 60

Mean Squares
A term used in the analysis of variance to refer 
to the variance in the data due to a particular 
source of variation. Converting the sum of 
squares into mean squares by dividing by the 
degrees of freedom lets you compare these 
ratios and determine whether there is a 

significant difference. The larger this ratio is, 
the greater the factor's impact on the outcome 
[4, 5].

Factor: 54 / 2 = 27
Error: 6 / 6 = 1

F-value
Calculated by dividing the factor mean square 
by the error mean square. As an alternative to 
calculating the p-value, F-critical can be used. 
The F-critical is found in the F-table, using the 
degrees of freedom for the factor and error, 
F(2, 6). An F-value greater than F-critical 
indicates statistical significance [4, 5].

F-value: 27 / 1 = 27
F-critical: 5.14

P-value
The P-value indicates the probability of 
observing the given F-value (or a more extreme 
value) under the assumption that the null 
hypothesis is true. It is calculated from the 
F-distribution, F(2, 6), using the F-value [4, 5].

F-value: 27
Probability (p-value) of X ≥ 27, F(2, 6) = 0.001

The ANOVA signals statistically significant 
results (P-value < 0.05), indicating that not all 
means are equal. But before action is taken, 
the model needs to be validated by examining 
the residuals. If all looks good, a post hoc test 
needs to be conducted for all pairwise com-
parisons. Finally, a review of the five require-
ments for data acceptance is required.

Model Validation
The ANOVA work does not stop when the 
model is fit. As discussed previously, the second 
assumption is about the distribution of the resid-
uals. If your model is not adequate, it will incor-
rectly represent your data. For example, incor-
rect F- and P-values. Models can be adversely 
affected by as few as one or two points [4].

To validate the model, the assumptions about 
the distribution of the residuals must be met. 
These assumptions include that the residuals are 
normally distributed, have independence of 
observations (no autocorrelation), and have 
homogeneity of variances (equal variances 
across groups). Residuals are elements of varia-
tion unexplained by the model. Since they are a 
form of error, the same general principles apply 
to the group of residuals as would apply to errors 
in general: one expects them to be normal and 
independently distributed (NID) with a mean of 
zero and constant variance NID(0, σ2). Depar-
tures from these assumptions usually mean that 
the residuals contain unaccounted-for informa-
tion. Validating the model helps ensure the 
conclusions drawn are correct, unambiguous, 
and defensible [1, 3].

Normality
Virtually any graph suitable for displaying the 
distribution of a set of data is ideal for judging 
the normality of the distribution of a group of 
residuals. The two most common plots and 
graphs are the normal probability plot and the 
histogram [3, 4].  

Interpretation: The normal probability plot of 
the residuals should approximately follow a 
straight line, see Figure 1. The histogram helps 
identify whether the data are skewed or contain 
outliers, as shown in Figure 2. With histograms, 
it’s best to have at least 50 data points (n ≥ 50) to 
make interpretation robust [4].

Independence
Suppose the order of the observations in a data 
table represents the order of execution of each 
test. In that case, a plot of the residuals of those 
observations versus the time order of the 
observations will test for lack of independence. 
For example, drift in equipment will produce 
models with autocorrelation. [3, 4]. 

Interpretation: Independent residuals show no 
trends or patterns when displayed in time 
order. Patterns in the data points indicate that 
residuals near each other may be correlated 
and thus not independent. The residuals on the 
plot should fall randomly around the center 
line with a mean of zero and constant variance 
NID(0, σ2) with no recognizable patterns or 
trends in the points, see Figure 3 [4].

Homogeneity
Plotting residuals versus the value of a fitted 
response should produce a distribution of 
points scattered randomly about zero, NID
(0, σ2), regardless of the size of the fitted 
value. Quite commonly, however, residual 
values may increase as the size of the fitted 
value increases. When this happens, the 
residual cloud becomes "funnel-shaped" with 
the larger end toward larger fitted values; that 
is, the residuals have larger and larger scatter 
as the value of the response increases [3, 4]. 

Interpretation: Ideally, the points should fall 
randomly around the center line with a mean 
of zero and constant variance NID(0, σ2) with 
no recognizable patterns, trends, or outliers 
in the points, see Figure 4 [4].

Post-hoc Testing
Suppose the ANOVA indicates a statistical 
difference (p-value < 0.05), and the model 
assumptions have been validated. In that case, 
post-hoc tests are used to identify which 
specific groups differ from each other. Stan-
dard post-hoc tests include Tukey, Fisher, 
Dunnett, and Hsu MCB. The Tukey and 
Fisher tests compare all pairs of groups. The 
Dunnett test compares the treatment groups 
to a control group. In contrast, the Hsu MCB 
test compares each group to the group with 
either the largest or the smallest mean (cho-
sen by the process engineer). The process 
engineer must consider individual and family 
error rates in conjunction with post-hoc 
testing [4].

The individual error rate is the maximum 
probability that one or more comparisons will 
incorrectly conclude that the observed differ-
ence is significantly different from the null 
hypothesis. It is equivalent to the alpha level 
selected (typically 0.05) for the hypothesis 
test. The family error rate is the maximum 
probability that a procedure consisting of 
more than one comparison will incorrectly 
conclude that at least one of the observed 
differences is significantly different from the 
null hypothesis. The family error rate is based 
on both the individual error rate and the 
number of comparisons. It is essential to 
consider the family error rate when making 
multiple comparisons because your chances 
of committing a Type I error for a series of 
comparisons are greater than the error rate 
for any one comparison alone [4]. 

The Tukey test is a robust, widely used, and 
popular post-hoc test. It compares all pairs of 
groups while controlling the simultaneous 
confidence level (SCL). The SCL is the 

Table 1. Three-factor data set.

 A B C

 1 4 7

 2 5 8

 3 6 9

Mean: 2 5 8

Std Dev: 1.0 1.0 1.0

percentage of times that a group of confi-
dence intervals will all include the true popu-
lation parameters or true differences between 
factor levels if the study were repeated multi-
ple times. The SCL level is based on both the 
individual confidence level and the number of 
confidence intervals. The Tukey family error 
rate is typically controlled at 0.05 (5%). The 
trade-off with Tukey's is the less precise 
confidence intervals and hypothesis tests that 
are less powerful than either Dunnett's or 
Hsu's MCB [4, 6].

Data Acceptance
There are five requirements if conclusions 
drawn from data analysis are to be correct, 
unambiguous, and defensible. These five 
requirements are an equitable sample, stabili-
ty, statistical significance, practical signifi-
cance, and truth. Each of these is discussed 
below.  

Equitable Sample: The sample is representa-
tive of the population. Free from bias and 
confounding. Sample size is sufficient, or 
confirmation runs have been done.

Stability: No unusual conditions when the 
data was collected. No outliers, trends, shifts, 
or non-random patterns. 

Statistically Significant: p-values are real, not 
noise, typically α < 0.05, and residuals are 
normal.

Practical Significance: Is the magnitude of 
difference worthwhile? Does anybody care?

Truth: Can you explain why it is true? Do 
you have a theory? Does the conclusion fit 
with the subject matter knowledge?

A Worked Example
Process characterization is an integral part of 
any continuous improvement program. There 
are many steps in that program for which 
process characterization is required. These 
include instances when we introduce a new 
process or tool for use, as well as when we 
bring a tool or process back online after 
scheduled/unscheduled maintenance, when 
we want to compare tools or processes, when 
we want to check the health of our process 
during the monitoring phase, when we are 
troubleshooting a bad process, or when we 
need to improve a process [3].

A young process engineer is completing a 
process improvement project on her acid 
copper pulse plating tanks, looking to 
improve throwing power. She conducts an 
experiment looking at three different pulse 
recipes. The first pulse recipe (P1) is the 
control (current wave), while recipes P2 and 
P3 are experimental. The test vehicle is an 18” 
x 24” panel with 20:1 aspect ratio holes. The 
engineer plates four panels with each of the 
three pulse recipes and measures the throw-
ing power (Note: the runs are randomized to 
protect against noise variables). The throwing 
power percentages, along with descriptive 
statistics, are shown in Table 4.

The process engineer analyzes the throwing 
power data using an ANOVA. The Recipe 
p-value is less than 0.05, indicating that not 
all means are equal, see Table 5. 

Next, the engineer validates the model by 
examining the residuals. The probability plot 
of the residuals approximately follows a 
straight line. The histogram is ignored due to 
the presence of fewer than 50 data points, 
making interpretation difficult. The residuals 
versus order points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns or trends in the points. The residuals 
versus fit points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns, trends, or outliers in the points. All 
four plots can be seen in Figure 5. The model 
has been validated. The process engineer now 
needs to use a post hoctest to complete pair-
wise comparisons. 

The process engineer decides to use the Tukey 
post hoc test. She uses the grouping informa-
tion table to quickly determine whether the 
mean difference between any pair of groups is 
statistically significant. Groups that do not 
share a letter are significantly different. In 
these results, Table 6 shows that group A 
contains Recipe P3, group B contains Recipe 
P2, and group C contains Recipe P1.

Discussion: The ANOVA model has been built, 
validated, and a post hoc test completed. The 
process engineer concludes that all three 
Recipe means are statistically different; the 
results in the data are unlikely to be explained 
by chance alone. The data acceptance criteria 
has been met: Equitable Sample (18” x 24” 
panel, 20:1 aspect ratio, four test panels), 
Stability (all parameters were in range during 
the testing), Statistical Significance (P-value < 
0.05, and residuals are normal and inde-
pendently distributed with a mean of zero and 
constant variance NID(0, σ2)), Practical Signifi-
cance (36% improvement in throwing power), 
and Truth (significant modifications to the 
pulse waves improve throwing power). Recipe 
P3 has been statistically proven to improve 
throwing power over Recipe P1 by an average 
of 36% (86% – 50%). The process engineer 
concludes her improvement project's data are 
correct, unambiguous, and defensible. She can 
confidently implement the process change.

Conclusions 
The analysis of variance (ANOVA) is over 100 
years old. Today, the ANOVA is the most 
useful technique in the field of statistical infer-
ence. The ANOVA is designed to allow for 
comparisons between multiple groups using a 
single test. The ANOVA work does not stop 
when the model is fit; the model must be 
validated. Validation is accomplished by verify-
ing that the residuals are normally distributed, 
have independence of observations, and have 
homogeneity of variances. When the ANOVA 
indicates a statistical difference, and the model 
assumptions have been validated, a post-hoc 
test is used to identify which specific groups 
differ from each other. The Tukey test is a 
robust, widely used, and popular post-hoc test. 
Finally, data acceptance is based on five 
requirements: equitable sample, stability, 
statistical significance, practical significance, 
and truth. Drawing conclusions from an 
improvement project's data that are correct, 
unambiguous, and defensible is crucial for the 
process engineer. 
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A raw ANOVA table is shown in Table 2, 
followed by the detailed ANOVA calcula-
tions. Finally, the completed ANOVA is 
shown in Table 3.

Descriptive Statistics
Descriptive statistics, such as the mean and 
standard deviation, summarize a set of data 
[4, 5].

Mean of A: 1 + 2 + 3 / 3 = 2
Mean of B: 4 + 5 + 6 / 3 = 5
Mean of C: 7 + 8 + 9 / 3 = 8
Grand Mean: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 
8 + 9 / 9 = 5

Degrees of Freedom
Degrees of freedom (n – 1) are the number of 
independent values that a statistical analysis 
can estimate; more specifically, they define 
how many units within a set can be selected 
without constraints. Let’s say we have three 
numbers that add up to 12. There are two 
degrees of freedom (3 – 1 = 2). After picking 
the first two numbers, there is no freedom to 
choose the last number; it is "determined" by 
the other two numbers. The first and second 
numbers can be any positive or negative 
numbers. For example, if the first number is 
3, the second number is 7, the third number 
must be 2 [4, 5].

Factor: 3 – 1 = 2
Error: 8 – 2 = 6
Total: 9 – 1 = 8

Abstract
Statistical tests are powerful tools that help 
process engineers make better decisions on 
process improvement projects. Drawing con-
clusions from an improvement project's data 
that are correct, unambiguous, and defensible is 
crucial for the process engineer. One of the 
most common parameters of interest with 
improvement projects is the mean. The purpose 
of this paper is to go over the appropriate steps 
for using the analysis of variance with multiple 
mean responses. The analysis of variance is 
reviewed, along with model validation and the 
key data acceptance criteria required. A worked 
example is provided using pulse acid copper 
throwing power. 

Keywords: ANOVA, means, model validation, 
data acceptance, pulse plating

Introduction
The two-sample t-test is used to determine if two 
population means are equal. A typical applica-
tion tests if a new process or treatment is superi-
or to a current one. But what if we have three or 
more means we want to test? The t-test is inap-
propriate for this analysis. 

For example, a young engineer is testing the 
mean brightener concentration in her four acid 
copper pulse plating tanks (A, B, C, D). There 
are six pairwise comparisons: AB, AC, AD, BC, 
BD, CD. Using the t-test, if the probability of 

correctly accepting the null hypothesis for each 
test is 1 – α = 0.95, then the probability of 
correctly accepting the null hypothesis for all six 
tests is (0.95)6 = 0.74, or 74%. In other words, 1 – 
0.74 = 26% chance of committing a Type I error. 
Recall that a Type I error occurs when we reject 
a true null hypothesis (no statistical difference) 
and claim that there is a statistical difference. The 
multiple comparisons cause a significant increase 
in Type I errors. The appropriate procedure for 
testing the equality of several means is the analy-
sis of variance [1].

The Analysis of Variance
The analysis of variance (ANOVA) was invent-
ed by British statistician R.A. Fisher in 1918. 
While the t-test was limited to comparisons 
between two groups, the ANOVA was designed 
to allow for comparisons between multiple 
groups using a single test. The ANOVA gained 
popularity after being included in Fisher’s text, 
Statistical Methods for Research Workers, 
in 1925.

Today, the ANOVA is the most useful tech-
nique in the field of statistical inference. The 
ANOVA is a general linear statistical model 
technique used to test the hypothesis that the 
means of two or more groups are equal. The 
linear function refers to the mathematical 
relationship between the model parameters 
and the dependent variable (y). Specifically, 

the response variable (y) is a linear function of 
the model parameters (the average outcome is 
linearly related to each term in the model) [2].

There are two types of assumptions with the 
ANOVA model. The first assumption is about 
the form of the model. These initial assump-
tions pertain to choosing the correct predictors 
(they are related to the response variable), and 
the average outcome is linearly related to each 
term in the model [2, 3]. 

The second assumption is about the distribu-
tion of the errors (residuals). It is generally 
assumed that the sampled populations are 
approximately normally distributed, the obser-
vations are independent, the variances are 
equal across groups (homogeneity), and the 
observations have been randomly sampled. 
The ANOVA technique is robust to minor 
deviations from normality, independence, and 
homogeneity. You can get clues about whether 
most of these assumptions will be met before 
building the model. But we typically build the 
model first and then verify the assumptions. 
Suppose you've done the foundational work in 
the early steps. In that case, testing assump-
tions is about looking for minor deviations, not 
major transgressions [2, 3].

The ANOVA tests the null hypothesis (H0) 
that two or more population means are equal 
versus the alternative hypothesis (H1) that at 
least one mean is different. Using the formal 
notation of statistical hypotheses, for k means 
we write:

H0: μ1 = μ2 =…= μk

H1: At least one mean is not equal 
to the others

In statistics, the alternative hypothesis can be 
either one-tailed or two-tailed. The one-tailed 
tests are for either inferiority or superiority, 
while the two-tailed tests are for parity (not 
equal). The ANOVA is a bit more complex. 

With ANOVA, we test "not all means are 
equal.” Suppose we are comparing three 
groups; the alternative hypothesis says that at 
least one of the following is true:

Mean 1 is not equal to mean 2.
Mean 1 is not equal to mean 3.
Mean 2 is not equal to mean 3.

As implied, the ANOVA analyzes variances to 
test means. But why analyze variances to derive 
conclusions about the means? Remember that 
“means are different.” And the larger the differ-
ences between the means, the more variation 
there is present. The ANOVA assesses the 
amount of variability between the group means 
in the context of the variation within groups to 
determine whether the mean differences are 
statistically significant. When the ANOVA 
signals statistically significant results (p-value 
< 0.05), indicating that not all means are equal, 
you’ll need to use post hoc tests to complete 
pairwise comparisons.

Let’s look at how the ANOVA works by using 
an example. Table 1 shows three factors (A, B, 
C), with three measured responses per factor, 
along with descriptive statistics. The data is 
fictitious and is presented for explanatory 
purposes only.

Sum of Squares
The sum of the squared deviations of scores 
from their mean. The total sum of squares 
helps express the total variation that can be 
attributed to various factors. The adjusted 
sum of squares is the unique portion of the 
sum of squares explained by a factor, given all 
other factors in the model, regardless of the 
order they were entered into the model [4, 5].

Factor (between the factors): 3 * [(2 – 5)2  + 
(5 – 5)2  + (8 – 5)2] = 54. (Note: “3” is the 
number of levels within the factors, not the 
number of factors, and “5” is the grand mean.)

Error (within the factors):
SS of A: (1 – 2)2 + (2 – 2)2 + (3 - 2)2 = 2
SS of B: (4 – 5)2 + (5 – 5)2 + (6 – 5)2 = 2
SS of C: (7 – 8)2 + (8 – 8)2 + (9 – 8)2 = 2
Error: 2 + 2 + 2 = 6
Total: 54 + 6 = 60

Mean Squares
A term used in the analysis of variance to refer 
to the variance in the data due to a particular 
source of variation. Converting the sum of 
squares into mean squares by dividing by the 
degrees of freedom lets you compare these 
ratios and determine whether there is a 

significant difference. The larger this ratio is, 
the greater the factor's impact on the outcome 
[4, 5].

Factor: 54 / 2 = 27
Error: 6 / 6 = 1

F-value
Calculated by dividing the factor mean square 
by the error mean square. As an alternative to 
calculating the p-value, F-critical can be used. 
The F-critical is found in the F-table, using the 
degrees of freedom for the factor and error, 
F(2, 6). An F-value greater than F-critical 
indicates statistical significance [4, 5].

F-value: 27 / 1 = 27
F-critical: 5.14

P-value
The P-value indicates the probability of 
observing the given F-value (or a more extreme 
value) under the assumption that the null 
hypothesis is true. It is calculated from the 
F-distribution, F(2, 6), using the F-value [4, 5].

F-value: 27
Probability (p-value) of X ≥ 27, F(2, 6) = 0.001

The ANOVA signals statistically significant 
results (P-value < 0.05), indicating that not all 
means are equal. But before action is taken, 
the model needs to be validated by examining 
the residuals. If all looks good, a post hoc test 
needs to be conducted for all pairwise com-
parisons. Finally, a review of the five require-
ments for data acceptance is required.

Model Validation
The ANOVA work does not stop when the 
model is fit. As discussed previously, the second 
assumption is about the distribution of the resid-
uals. If your model is not adequate, it will incor-
rectly represent your data. For example, incor-
rect F- and P-values. Models can be adversely 
affected by as few as one or two points [4].

To validate the model, the assumptions about 
the distribution of the residuals must be met. 
These assumptions include that the residuals are 
normally distributed, have independence of 
observations (no autocorrelation), and have 
homogeneity of variances (equal variances 
across groups). Residuals are elements of varia-
tion unexplained by the model. Since they are a 
form of error, the same general principles apply 
to the group of residuals as would apply to errors 
in general: one expects them to be normal and 
independently distributed (NID) with a mean of 
zero and constant variance NID(0, σ2). Depar-
tures from these assumptions usually mean that 
the residuals contain unaccounted-for informa-
tion. Validating the model helps ensure the 
conclusions drawn are correct, unambiguous, 
and defensible [1, 3].

Normality
Virtually any graph suitable for displaying the 
distribution of a set of data is ideal for judging 
the normality of the distribution of a group of 
residuals. The two most common plots and 
graphs are the normal probability plot and the 
histogram [3, 4].  

Interpretation: The normal probability plot of 
the residuals should approximately follow a 
straight line, see Figure 1. The histogram helps 
identify whether the data are skewed or contain 
outliers, as shown in Figure 2. With histograms, 
it’s best to have at least 50 data points (n ≥ 50) to 
make interpretation robust [4].

Independence
Suppose the order of the observations in a data 
table represents the order of execution of each 
test. In that case, a plot of the residuals of those 
observations versus the time order of the 
observations will test for lack of independence. 
For example, drift in equipment will produce 
models with autocorrelation. [3, 4]. 

Interpretation: Independent residuals show no 
trends or patterns when displayed in time 
order. Patterns in the data points indicate that 
residuals near each other may be correlated 
and thus not independent. The residuals on the 
plot should fall randomly around the center 
line with a mean of zero and constant variance 
NID(0, σ2) with no recognizable patterns or 
trends in the points, see Figure 3 [4].

Homogeneity
Plotting residuals versus the value of a fitted 
response should produce a distribution of 
points scattered randomly about zero, NID
(0, σ2), regardless of the size of the fitted 
value. Quite commonly, however, residual 
values may increase as the size of the fitted 
value increases. When this happens, the 
residual cloud becomes "funnel-shaped" with 
the larger end toward larger fitted values; that 
is, the residuals have larger and larger scatter 
as the value of the response increases [3, 4]. 

Interpretation: Ideally, the points should fall 
randomly around the center line with a mean 
of zero and constant variance NID(0, σ2) with 
no recognizable patterns, trends, or outliers 
in the points, see Figure 4 [4].

Post-hoc Testing
Suppose the ANOVA indicates a statistical 
difference (p-value < 0.05), and the model 
assumptions have been validated. In that case, 
post-hoc tests are used to identify which 
specific groups differ from each other. Stan-
dard post-hoc tests include Tukey, Fisher, 
Dunnett, and Hsu MCB. The Tukey and 
Fisher tests compare all pairs of groups. The 
Dunnett test compares the treatment groups 
to a control group. In contrast, the Hsu MCB 
test compares each group to the group with 
either the largest or the smallest mean (cho-
sen by the process engineer). The process 
engineer must consider individual and family 
error rates in conjunction with post-hoc 
testing [4].

The individual error rate is the maximum 
probability that one or more comparisons will 
incorrectly conclude that the observed differ-
ence is significantly different from the null 
hypothesis. It is equivalent to the alpha level 
selected (typically 0.05) for the hypothesis 
test. The family error rate is the maximum 
probability that a procedure consisting of 
more than one comparison will incorrectly 
conclude that at least one of the observed 
differences is significantly different from the 
null hypothesis. The family error rate is based 
on both the individual error rate and the 
number of comparisons. It is essential to 
consider the family error rate when making 
multiple comparisons because your chances 
of committing a Type I error for a series of 
comparisons are greater than the error rate 
for any one comparison alone [4]. 

The Tukey test is a robust, widely used, and 
popular post-hoc test. It compares all pairs of 
groups while controlling the simultaneous 
confidence level (SCL). The SCL is the 

Table 2. Raw ANOVA table.

Factor df factor SS factor MS factor F p

Error df error SS error MS error 

Total df total SS total 

Source of
Variation

Degrees of
Freedom

Adj Sum of
Squares

Adj Mean
Square F-Value P-Value

percentage of times that a group of confi-
dence intervals will all include the true popu-
lation parameters or true differences between 
factor levels if the study were repeated multi-
ple times. The SCL level is based on both the 
individual confidence level and the number of 
confidence intervals. The Tukey family error 
rate is typically controlled at 0.05 (5%). The 
trade-off with Tukey's is the less precise 
confidence intervals and hypothesis tests that 
are less powerful than either Dunnett's or 
Hsu's MCB [4, 6].

Data Acceptance
There are five requirements if conclusions 
drawn from data analysis are to be correct, 
unambiguous, and defensible. These five 
requirements are an equitable sample, stabili-
ty, statistical significance, practical signifi-
cance, and truth. Each of these is discussed 
below.  

Equitable Sample: The sample is representa-
tive of the population. Free from bias and 
confounding. Sample size is sufficient, or 
confirmation runs have been done.

Stability: No unusual conditions when the 
data was collected. No outliers, trends, shifts, 
or non-random patterns. 

Statistically Significant: p-values are real, not 
noise, typically α < 0.05, and residuals are 
normal.

Practical Significance: Is the magnitude of 
difference worthwhile? Does anybody care?

Truth: Can you explain why it is true? Do 
you have a theory? Does the conclusion fit 
with the subject matter knowledge?

A Worked Example
Process characterization is an integral part of 
any continuous improvement program. There 
are many steps in that program for which 
process characterization is required. These 
include instances when we introduce a new 
process or tool for use, as well as when we 
bring a tool or process back online after 
scheduled/unscheduled maintenance, when 
we want to compare tools or processes, when 
we want to check the health of our process 
during the monitoring phase, when we are 
troubleshooting a bad process, or when we 
need to improve a process [3].

A young process engineer is completing a 
process improvement project on her acid 
copper pulse plating tanks, looking to 
improve throwing power. She conducts an 
experiment looking at three different pulse 
recipes. The first pulse recipe (P1) is the 
control (current wave), while recipes P2 and 
P3 are experimental. The test vehicle is an 18” 
x 24” panel with 20:1 aspect ratio holes. The 
engineer plates four panels with each of the 
three pulse recipes and measures the throw-
ing power (Note: the runs are randomized to 
protect against noise variables). The throwing 
power percentages, along with descriptive 
statistics, are shown in Table 4.

The process engineer analyzes the throwing 
power data using an ANOVA. The Recipe 
p-value is less than 0.05, indicating that not 
all means are equal, see Table 5. 

Next, the engineer validates the model by 
examining the residuals. The probability plot 
of the residuals approximately follows a 
straight line. The histogram is ignored due to 
the presence of fewer than 50 data points, 
making interpretation difficult. The residuals 
versus order points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns or trends in the points. The residuals 
versus fit points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns, trends, or outliers in the points. All 
four plots can be seen in Figure 5. The model 
has been validated. The process engineer now 
needs to use a post hoctest to complete pair-
wise comparisons. 

The process engineer decides to use the Tukey 
post hoc test. She uses the grouping informa-
tion table to quickly determine whether the 
mean difference between any pair of groups is 
statistically significant. Groups that do not 
share a letter are significantly different. In 
these results, Table 6 shows that group A 
contains Recipe P3, group B contains Recipe 
P2, and group C contains Recipe P1.

Discussion: The ANOVA model has been built, 
validated, and a post hoc test completed. The 
process engineer concludes that all three 
Recipe means are statistically different; the 
results in the data are unlikely to be explained 
by chance alone. The data acceptance criteria 
has been met: Equitable Sample (18” x 24” 
panel, 20:1 aspect ratio, four test panels), 
Stability (all parameters were in range during 
the testing), Statistical Significance (P-value < 
0.05, and residuals are normal and inde-
pendently distributed with a mean of zero and 
constant variance NID(0, σ2)), Practical Signifi-
cance (36% improvement in throwing power), 
and Truth (significant modifications to the 
pulse waves improve throwing power). Recipe 
P3 has been statistically proven to improve 
throwing power over Recipe P1 by an average 
of 36% (86% – 50%). The process engineer 
concludes her improvement project's data are 
correct, unambiguous, and defensible. She can 
confidently implement the process change.

Conclusions 
The analysis of variance (ANOVA) is over 100 
years old. Today, the ANOVA is the most 
useful technique in the field of statistical infer-
ence. The ANOVA is designed to allow for 
comparisons between multiple groups using a 
single test. The ANOVA work does not stop 
when the model is fit; the model must be 
validated. Validation is accomplished by verify-
ing that the residuals are normally distributed, 
have independence of observations, and have 
homogeneity of variances. When the ANOVA 
indicates a statistical difference, and the model 
assumptions have been validated, a post-hoc 
test is used to identify which specific groups 
differ from each other. The Tukey test is a 
robust, widely used, and popular post-hoc test. 
Finally, data acceptance is based on five 
requirements: equitable sample, stability, 
statistical significance, practical significance, 
and truth. Drawing conclusions from an 
improvement project's data that are correct, 
unambiguous, and defensible is crucial for the 
process engineer. 
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A raw ANOVA table is shown in Table 2, 
followed by the detailed ANOVA calcula-
tions. Finally, the completed ANOVA is 
shown in Table 3.

Descriptive Statistics
Descriptive statistics, such as the mean and 
standard deviation, summarize a set of data 
[4, 5].

Mean of A: 1 + 2 + 3 / 3 = 2
Mean of B: 4 + 5 + 6 / 3 = 5
Mean of C: 7 + 8 + 9 / 3 = 8
Grand Mean: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 
8 + 9 / 9 = 5

Degrees of Freedom
Degrees of freedom (n – 1) are the number of 
independent values that a statistical analysis 
can estimate; more specifically, they define 
how many units within a set can be selected 
without constraints. Let’s say we have three 
numbers that add up to 12. There are two 
degrees of freedom (3 – 1 = 2). After picking 
the first two numbers, there is no freedom to 
choose the last number; it is "determined" by 
the other two numbers. The first and second 
numbers can be any positive or negative 
numbers. For example, if the first number is 
3, the second number is 7, the third number 
must be 2 [4, 5].

Factor: 3 – 1 = 2
Error: 8 – 2 = 6
Total: 9 – 1 = 8
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Introduction
The two-sample t-test is used to determine if two 
population means are equal. A typical applica-
tion tests if a new process or treatment is superi-
or to a current one. But what if we have three or 
more means we want to test? The t-test is inap-
propriate for this analysis. 

For example, a young engineer is testing the 
mean brightener concentration in her four acid 
copper pulse plating tanks (A, B, C, D). There 
are six pairwise comparisons: AB, AC, AD, BC, 
BD, CD. Using the t-test, if the probability of 

correctly accepting the null hypothesis for each 
test is 1 – α = 0.95, then the probability of 
correctly accepting the null hypothesis for all six 
tests is (0.95)6 = 0.74, or 74%. In other words, 1 – 
0.74 = 26% chance of committing a Type I error. 
Recall that a Type I error occurs when we reject 
a true null hypothesis (no statistical difference) 
and claim that there is a statistical difference. The 
multiple comparisons cause a significant increase 
in Type I errors. The appropriate procedure for 
testing the equality of several means is the analy-
sis of variance [1].

The Analysis of Variance
The analysis of variance (ANOVA) was invent-
ed by British statistician R.A. Fisher in 1918. 
While the t-test was limited to comparisons 
between two groups, the ANOVA was designed 
to allow for comparisons between multiple 
groups using a single test. The ANOVA gained 
popularity after being included in Fisher’s text, 
Statistical Methods for Research Workers, 
in 1925.

Today, the ANOVA is the most useful tech-
nique in the field of statistical inference. The 
ANOVA is a general linear statistical model 
technique used to test the hypothesis that the 
means of two or more groups are equal. The 
linear function refers to the mathematical 
relationship between the model parameters 
and the dependent variable (y). Specifically, 

the response variable (y) is a linear function of 
the model parameters (the average outcome is 
linearly related to each term in the model) [2].

There are two types of assumptions with the 
ANOVA model. The first assumption is about 
the form of the model. These initial assump-
tions pertain to choosing the correct predictors 
(they are related to the response variable), and 
the average outcome is linearly related to each 
term in the model [2, 3]. 

The second assumption is about the distribu-
tion of the errors (residuals). It is generally 
assumed that the sampled populations are 
approximately normally distributed, the obser-
vations are independent, the variances are 
equal across groups (homogeneity), and the 
observations have been randomly sampled. 
The ANOVA technique is robust to minor 
deviations from normality, independence, and 
homogeneity. You can get clues about whether 
most of these assumptions will be met before 
building the model. But we typically build the 
model first and then verify the assumptions. 
Suppose you've done the foundational work in 
the early steps. In that case, testing assump-
tions is about looking for minor deviations, not 
major transgressions [2, 3].

The ANOVA tests the null hypothesis (H0) 
that two or more population means are equal 
versus the alternative hypothesis (H1) that at 
least one mean is different. Using the formal 
notation of statistical hypotheses, for k means 
we write:

H0: μ1 = μ2 =…= μk

H1: At least one mean is not equal 
to the others

In statistics, the alternative hypothesis can be 
either one-tailed or two-tailed. The one-tailed 
tests are for either inferiority or superiority, 
while the two-tailed tests are for parity (not 
equal). The ANOVA is a bit more complex. 

With ANOVA, we test "not all means are 
equal.” Suppose we are comparing three 
groups; the alternative hypothesis says that at 
least one of the following is true:

Mean 1 is not equal to mean 2.
Mean 1 is not equal to mean 3.
Mean 2 is not equal to mean 3.

As implied, the ANOVA analyzes variances to 
test means. But why analyze variances to derive 
conclusions about the means? Remember that 
“means are different.” And the larger the differ-
ences between the means, the more variation 
there is present. The ANOVA assesses the 
amount of variability between the group means 
in the context of the variation within groups to 
determine whether the mean differences are 
statistically significant. When the ANOVA 
signals statistically significant results (p-value 
< 0.05), indicating that not all means are equal, 
you’ll need to use post hoc tests to complete 
pairwise comparisons.

Let’s look at how the ANOVA works by using 
an example. Table 1 shows three factors (A, B, 
C), with three measured responses per factor, 
along with descriptive statistics. The data is 
fictitious and is presented for explanatory 
purposes only.

Sum of Squares
The sum of the squared deviations of scores 
from their mean. The total sum of squares 
helps express the total variation that can be 
attributed to various factors. The adjusted 
sum of squares is the unique portion of the 
sum of squares explained by a factor, given all 
other factors in the model, regardless of the 
order they were entered into the model [4, 5].

Factor (between the factors): 3 * [(2 – 5)2  + 
(5 – 5)2  + (8 – 5)2] = 54. (Note: “3” is the 
number of levels within the factors, not the 
number of factors, and “5” is the grand mean.)

Error (within the factors):
SS of A: (1 – 2)2 + (2 – 2)2 + (3 - 2)2 = 2
SS of B: (4 – 5)2 + (5 – 5)2 + (6 – 5)2 = 2
SS of C: (7 – 8)2 + (8 – 8)2 + (9 – 8)2 = 2
Error: 2 + 2 + 2 = 6
Total: 54 + 6 = 60

Mean Squares
A term used in the analysis of variance to refer 
to the variance in the data due to a particular 
source of variation. Converting the sum of 
squares into mean squares by dividing by the 
degrees of freedom lets you compare these 
ratios and determine whether there is a 

significant difference. The larger this ratio is, 
the greater the factor's impact on the outcome 
[4, 5].

Factor: 54 / 2 = 27
Error: 6 / 6 = 1

F-value
Calculated by dividing the factor mean square 
by the error mean square. As an alternative to 
calculating the p-value, F-critical can be used. 
The F-critical is found in the F-table, using the 
degrees of freedom for the factor and error, 
F(2, 6). An F-value greater than F-critical 
indicates statistical significance [4, 5].

F-value: 27 / 1 = 27
F-critical: 5.14

P-value
The P-value indicates the probability of 
observing the given F-value (or a more extreme 
value) under the assumption that the null 
hypothesis is true. It is calculated from the 
F-distribution, F(2, 6), using the F-value [4, 5].

F-value: 27
Probability (p-value) of X ≥ 27, F(2, 6) = 0.001

The ANOVA signals statistically significant 
results (P-value < 0.05), indicating that not all 
means are equal. But before action is taken, 
the model needs to be validated by examining 
the residuals. If all looks good, a post hoc test 
needs to be conducted for all pairwise com-
parisons. Finally, a review of the five require-
ments for data acceptance is required.

Model Validation
The ANOVA work does not stop when the 
model is fit. As discussed previously, the second 
assumption is about the distribution of the resid-
uals. If your model is not adequate, it will incor-
rectly represent your data. For example, incor-
rect F- and P-values. Models can be adversely 
affected by as few as one or two points [4].

To validate the model, the assumptions about 
the distribution of the residuals must be met. 
These assumptions include that the residuals are 
normally distributed, have independence of 
observations (no autocorrelation), and have 
homogeneity of variances (equal variances 
across groups). Residuals are elements of varia-
tion unexplained by the model. Since they are a 
form of error, the same general principles apply 
to the group of residuals as would apply to errors 
in general: one expects them to be normal and 
independently distributed (NID) with a mean of 
zero and constant variance NID(0, σ2). Depar-
tures from these assumptions usually mean that 
the residuals contain unaccounted-for informa-
tion. Validating the model helps ensure the 
conclusions drawn are correct, unambiguous, 
and defensible [1, 3].

Normality
Virtually any graph suitable for displaying the 
distribution of a set of data is ideal for judging 
the normality of the distribution of a group of 
residuals. The two most common plots and 
graphs are the normal probability plot and the 
histogram [3, 4].  

Interpretation: The normal probability plot of 
the residuals should approximately follow a 
straight line, see Figure 1. The histogram helps 
identify whether the data are skewed or contain 
outliers, as shown in Figure 2. With histograms, 
it’s best to have at least 50 data points (n ≥ 50) to 
make interpretation robust [4].

Independence
Suppose the order of the observations in a data 
table represents the order of execution of each 
test. In that case, a plot of the residuals of those 
observations versus the time order of the 
observations will test for lack of independence. 
For example, drift in equipment will produce 
models with autocorrelation. [3, 4]. 

Interpretation: Independent residuals show no 
trends or patterns when displayed in time 
order. Patterns in the data points indicate that 
residuals near each other may be correlated 
and thus not independent. The residuals on the 
plot should fall randomly around the center 
line with a mean of zero and constant variance 
NID(0, σ2) with no recognizable patterns or 
trends in the points, see Figure 3 [4].

Homogeneity
Plotting residuals versus the value of a fitted 
response should produce a distribution of 
points scattered randomly about zero, NID
(0, σ2), regardless of the size of the fitted 
value. Quite commonly, however, residual 
values may increase as the size of the fitted 
value increases. When this happens, the 
residual cloud becomes "funnel-shaped" with 
the larger end toward larger fitted values; that 
is, the residuals have larger and larger scatter 
as the value of the response increases [3, 4]. 

Interpretation: Ideally, the points should fall 
randomly around the center line with a mean 
of zero and constant variance NID(0, σ2) with 
no recognizable patterns, trends, or outliers 
in the points, see Figure 4 [4].

Post-hoc Testing
Suppose the ANOVA indicates a statistical 
difference (p-value < 0.05), and the model 
assumptions have been validated. In that case, 
post-hoc tests are used to identify which 
specific groups differ from each other. Stan-
dard post-hoc tests include Tukey, Fisher, 
Dunnett, and Hsu MCB. The Tukey and 
Fisher tests compare all pairs of groups. The 
Dunnett test compares the treatment groups 
to a control group. In contrast, the Hsu MCB 
test compares each group to the group with 
either the largest or the smallest mean (cho-
sen by the process engineer). The process 
engineer must consider individual and family 
error rates in conjunction with post-hoc 
testing [4].

The individual error rate is the maximum 
probability that one or more comparisons will 
incorrectly conclude that the observed differ-
ence is significantly different from the null 
hypothesis. It is equivalent to the alpha level 
selected (typically 0.05) for the hypothesis 
test. The family error rate is the maximum 
probability that a procedure consisting of 
more than one comparison will incorrectly 
conclude that at least one of the observed 
differences is significantly different from the 
null hypothesis. The family error rate is based 
on both the individual error rate and the 
number of comparisons. It is essential to 
consider the family error rate when making 
multiple comparisons because your chances 
of committing a Type I error for a series of 
comparisons are greater than the error rate 
for any one comparison alone [4]. 

The Tukey test is a robust, widely used, and 
popular post-hoc test. It compares all pairs of 
groups while controlling the simultaneous 
confidence level (SCL). The SCL is the 

Table 3. Completed ANOVA table.

Source DF Adj SS Adj MS F-Value P-Value

Factor 2 54 27 27 0.001

Error 6 6 1

Total: 8 60

percentage of times that a group of confi-
dence intervals will all include the true popu-
lation parameters or true differences between 
factor levels if the study were repeated multi-
ple times. The SCL level is based on both the 
individual confidence level and the number of 
confidence intervals. The Tukey family error 
rate is typically controlled at 0.05 (5%). The 
trade-off with Tukey's is the less precise 
confidence intervals and hypothesis tests that 
are less powerful than either Dunnett's or 
Hsu's MCB [4, 6].

Data Acceptance
There are five requirements if conclusions 
drawn from data analysis are to be correct, 
unambiguous, and defensible. These five 
requirements are an equitable sample, stabili-
ty, statistical significance, practical signifi-
cance, and truth. Each of these is discussed 
below.  

Equitable Sample: The sample is representa-
tive of the population. Free from bias and 
confounding. Sample size is sufficient, or 
confirmation runs have been done.

Stability: No unusual conditions when the 
data was collected. No outliers, trends, shifts, 
or non-random patterns. 

Statistically Significant: p-values are real, not 
noise, typically α < 0.05, and residuals are 
normal.

Practical Significance: Is the magnitude of 
difference worthwhile? Does anybody care?

Truth: Can you explain why it is true? Do 
you have a theory? Does the conclusion fit 
with the subject matter knowledge?

A Worked Example
Process characterization is an integral part of 
any continuous improvement program. There 
are many steps in that program for which 
process characterization is required. These 
include instances when we introduce a new 
process or tool for use, as well as when we 
bring a tool or process back online after 
scheduled/unscheduled maintenance, when 
we want to compare tools or processes, when 
we want to check the health of our process 
during the monitoring phase, when we are 
troubleshooting a bad process, or when we 
need to improve a process [3].

A young process engineer is completing a 
process improvement project on her acid 
copper pulse plating tanks, looking to 
improve throwing power. She conducts an 
experiment looking at three different pulse 
recipes. The first pulse recipe (P1) is the 
control (current wave), while recipes P2 and 
P3 are experimental. The test vehicle is an 18” 
x 24” panel with 20:1 aspect ratio holes. The 
engineer plates four panels with each of the 
three pulse recipes and measures the throw-
ing power (Note: the runs are randomized to 
protect against noise variables). The throwing 
power percentages, along with descriptive 
statistics, are shown in Table 4.

The process engineer analyzes the throwing 
power data using an ANOVA. The Recipe 
p-value is less than 0.05, indicating that not 
all means are equal, see Table 5. 

Next, the engineer validates the model by 
examining the residuals. The probability plot 
of the residuals approximately follows a 
straight line. The histogram is ignored due to 
the presence of fewer than 50 data points, 
making interpretation difficult. The residuals 
versus order points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns or trends in the points. The residuals 
versus fit points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns, trends, or outliers in the points. All 
four plots can be seen in Figure 5. The model 
has been validated. The process engineer now 
needs to use a post hoctest to complete pair-
wise comparisons. 

The process engineer decides to use the Tukey 
post hoc test. She uses the grouping informa-
tion table to quickly determine whether the 
mean difference between any pair of groups is 
statistically significant. Groups that do not 
share a letter are significantly different. In 
these results, Table 6 shows that group A 
contains Recipe P3, group B contains Recipe 
P2, and group C contains Recipe P1.

Discussion: The ANOVA model has been built, 
validated, and a post hoc test completed. The 
process engineer concludes that all three 
Recipe means are statistically different; the 
results in the data are unlikely to be explained 
by chance alone. The data acceptance criteria 
has been met: Equitable Sample (18” x 24” 
panel, 20:1 aspect ratio, four test panels), 
Stability (all parameters were in range during 
the testing), Statistical Significance (P-value < 
0.05, and residuals are normal and inde-
pendently distributed with a mean of zero and 
constant variance NID(0, σ2)), Practical Signifi-
cance (36% improvement in throwing power), 
and Truth (significant modifications to the 
pulse waves improve throwing power). Recipe 
P3 has been statistically proven to improve 
throwing power over Recipe P1 by an average 
of 36% (86% – 50%). The process engineer 
concludes her improvement project's data are 
correct, unambiguous, and defensible. She can 
confidently implement the process change.

Conclusions 
The analysis of variance (ANOVA) is over 100 
years old. Today, the ANOVA is the most 
useful technique in the field of statistical infer-
ence. The ANOVA is designed to allow for 
comparisons between multiple groups using a 
single test. The ANOVA work does not stop 
when the model is fit; the model must be 
validated. Validation is accomplished by verify-
ing that the residuals are normally distributed, 
have independence of observations, and have 
homogeneity of variances. When the ANOVA 
indicates a statistical difference, and the model 
assumptions have been validated, a post-hoc 
test is used to identify which specific groups 
differ from each other. The Tukey test is a 
robust, widely used, and popular post-hoc test. 
Finally, data acceptance is based on five 
requirements: equitable sample, stability, 
statistical significance, practical significance, 
and truth. Drawing conclusions from an 
improvement project's data that are correct, 
unambiguous, and defensible is crucial for the 
process engineer. 
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A raw ANOVA table is shown in Table 2, 
followed by the detailed ANOVA calcula-
tions. Finally, the completed ANOVA is 
shown in Table 3.

Descriptive Statistics
Descriptive statistics, such as the mean and 
standard deviation, summarize a set of data 
[4, 5].

Mean of A: 1 + 2 + 3 / 3 = 2
Mean of B: 4 + 5 + 6 / 3 = 5
Mean of C: 7 + 8 + 9 / 3 = 8
Grand Mean: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 
8 + 9 / 9 = 5

Degrees of Freedom
Degrees of freedom (n – 1) are the number of 
independent values that a statistical analysis 
can estimate; more specifically, they define 
how many units within a set can be selected 
without constraints. Let’s say we have three 
numbers that add up to 12. There are two 
degrees of freedom (3 – 1 = 2). After picking 
the first two numbers, there is no freedom to 
choose the last number; it is "determined" by 
the other two numbers. The first and second 
numbers can be any positive or negative 
numbers. For example, if the first number is 
3, the second number is 7, the third number 
must be 2 [4, 5].

Factor: 3 – 1 = 2
Error: 8 – 2 = 6
Total: 9 – 1 = 8
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Introduction
The two-sample t-test is used to determine if two 
population means are equal. A typical applica-
tion tests if a new process or treatment is superi-
or to a current one. But what if we have three or 
more means we want to test? The t-test is inap-
propriate for this analysis. 

For example, a young engineer is testing the 
mean brightener concentration in her four acid 
copper pulse plating tanks (A, B, C, D). There 
are six pairwise comparisons: AB, AC, AD, BC, 
BD, CD. Using the t-test, if the probability of 

correctly accepting the null hypothesis for each 
test is 1 – α = 0.95, then the probability of 
correctly accepting the null hypothesis for all six 
tests is (0.95)6 = 0.74, or 74%. In other words, 1 – 
0.74 = 26% chance of committing a Type I error. 
Recall that a Type I error occurs when we reject 
a true null hypothesis (no statistical difference) 
and claim that there is a statistical difference. The 
multiple comparisons cause a significant increase 
in Type I errors. The appropriate procedure for 
testing the equality of several means is the analy-
sis of variance [1].

The Analysis of Variance
The analysis of variance (ANOVA) was invent-
ed by British statistician R.A. Fisher in 1918. 
While the t-test was limited to comparisons 
between two groups, the ANOVA was designed 
to allow for comparisons between multiple 
groups using a single test. The ANOVA gained 
popularity after being included in Fisher’s text, 
Statistical Methods for Research Workers, 
in 1925.

Today, the ANOVA is the most useful tech-
nique in the field of statistical inference. The 
ANOVA is a general linear statistical model 
technique used to test the hypothesis that the 
means of two or more groups are equal. The 
linear function refers to the mathematical 
relationship between the model parameters 
and the dependent variable (y). Specifically, 

the response variable (y) is a linear function of 
the model parameters (the average outcome is 
linearly related to each term in the model) [2].

There are two types of assumptions with the 
ANOVA model. The first assumption is about 
the form of the model. These initial assump-
tions pertain to choosing the correct predictors 
(they are related to the response variable), and 
the average outcome is linearly related to each 
term in the model [2, 3]. 

The second assumption is about the distribu-
tion of the errors (residuals). It is generally 
assumed that the sampled populations are 
approximately normally distributed, the obser-
vations are independent, the variances are 
equal across groups (homogeneity), and the 
observations have been randomly sampled. 
The ANOVA technique is robust to minor 
deviations from normality, independence, and 
homogeneity. You can get clues about whether 
most of these assumptions will be met before 
building the model. But we typically build the 
model first and then verify the assumptions. 
Suppose you've done the foundational work in 
the early steps. In that case, testing assump-
tions is about looking for minor deviations, not 
major transgressions [2, 3].

The ANOVA tests the null hypothesis (H0) 
that two or more population means are equal 
versus the alternative hypothesis (H1) that at 
least one mean is different. Using the formal 
notation of statistical hypotheses, for k means 
we write:

H0: μ1 = μ2 =…= μk

H1: At least one mean is not equal 
to the others

In statistics, the alternative hypothesis can be 
either one-tailed or two-tailed. The one-tailed 
tests are for either inferiority or superiority, 
while the two-tailed tests are for parity (not 
equal). The ANOVA is a bit more complex. 

With ANOVA, we test "not all means are 
equal.” Suppose we are comparing three 
groups; the alternative hypothesis says that at 
least one of the following is true:

Mean 1 is not equal to mean 2.
Mean 1 is not equal to mean 3.
Mean 2 is not equal to mean 3.

As implied, the ANOVA analyzes variances to 
test means. But why analyze variances to derive 
conclusions about the means? Remember that 
“means are different.” And the larger the differ-
ences between the means, the more variation 
there is present. The ANOVA assesses the 
amount of variability between the group means 
in the context of the variation within groups to 
determine whether the mean differences are 
statistically significant. When the ANOVA 
signals statistically significant results (p-value 
< 0.05), indicating that not all means are equal, 
you’ll need to use post hoc tests to complete 
pairwise comparisons.

Let’s look at how the ANOVA works by using 
an example. Table 1 shows three factors (A, B, 
C), with three measured responses per factor, 
along with descriptive statistics. The data is 
fictitious and is presented for explanatory 
purposes only.

Sum of Squares
The sum of the squared deviations of scores 
from their mean. The total sum of squares 
helps express the total variation that can be 
attributed to various factors. The adjusted 
sum of squares is the unique portion of the 
sum of squares explained by a factor, given all 
other factors in the model, regardless of the 
order they were entered into the model [4, 5].

Factor (between the factors): 3 * [(2 – 5)2  + 
(5 – 5)2  + (8 – 5)2] = 54. (Note: “3” is the 
number of levels within the factors, not the 
number of factors, and “5” is the grand mean.)

Error (within the factors):
SS of A: (1 – 2)2 + (2 – 2)2 + (3 - 2)2 = 2
SS of B: (4 – 5)2 + (5 – 5)2 + (6 – 5)2 = 2
SS of C: (7 – 8)2 + (8 – 8)2 + (9 – 8)2 = 2
Error: 2 + 2 + 2 = 6
Total: 54 + 6 = 60

Mean Squares
A term used in the analysis of variance to refer 
to the variance in the data due to a particular 
source of variation. Converting the sum of 
squares into mean squares by dividing by the 
degrees of freedom lets you compare these 
ratios and determine whether there is a 

significant difference. The larger this ratio is, 
the greater the factor's impact on the outcome 
[4, 5].

Factor: 54 / 2 = 27
Error: 6 / 6 = 1

F-value
Calculated by dividing the factor mean square 
by the error mean square. As an alternative to 
calculating the p-value, F-critical can be used. 
The F-critical is found in the F-table, using the 
degrees of freedom for the factor and error, 
F(2, 6). An F-value greater than F-critical 
indicates statistical significance [4, 5].

F-value: 27 / 1 = 27
F-critical: 5.14

P-value
The P-value indicates the probability of 
observing the given F-value (or a more extreme 
value) under the assumption that the null 
hypothesis is true. It is calculated from the 
F-distribution, F(2, 6), using the F-value [4, 5].

F-value: 27
Probability (p-value) of X ≥ 27, F(2, 6) = 0.001

The ANOVA signals statistically significant 
results (P-value < 0.05), indicating that not all 
means are equal. But before action is taken, 
the model needs to be validated by examining 
the residuals. If all looks good, a post hoc test 
needs to be conducted for all pairwise com-
parisons. Finally, a review of the five require-
ments for data acceptance is required.

Model Validation
The ANOVA work does not stop when the 
model is fit. As discussed previously, the second 
assumption is about the distribution of the resid-
uals. If your model is not adequate, it will incor-
rectly represent your data. For example, incor-
rect F- and P-values. Models can be adversely 
affected by as few as one or two points [4].

To validate the model, the assumptions about 
the distribution of the residuals must be met. 
These assumptions include that the residuals are 
normally distributed, have independence of 
observations (no autocorrelation), and have 
homogeneity of variances (equal variances 
across groups). Residuals are elements of varia-
tion unexplained by the model. Since they are a 
form of error, the same general principles apply 
to the group of residuals as would apply to errors 
in general: one expects them to be normal and 
independently distributed (NID) with a mean of 
zero and constant variance NID(0, σ2). Depar-
tures from these assumptions usually mean that 
the residuals contain unaccounted-for informa-
tion. Validating the model helps ensure the 
conclusions drawn are correct, unambiguous, 
and defensible [1, 3].

Normality
Virtually any graph suitable for displaying the 
distribution of a set of data is ideal for judging 
the normality of the distribution of a group of 
residuals. The two most common plots and 
graphs are the normal probability plot and the 
histogram [3, 4].  

Interpretation: The normal probability plot of 
the residuals should approximately follow a 
straight line, see Figure 1. The histogram helps 
identify whether the data are skewed or contain 
outliers, as shown in Figure 2. With histograms, 
it’s best to have at least 50 data points (n ≥ 50) to 
make interpretation robust [4].

Independence
Suppose the order of the observations in a data 
table represents the order of execution of each 
test. In that case, a plot of the residuals of those 
observations versus the time order of the 
observations will test for lack of independence. 
For example, drift in equipment will produce 
models with autocorrelation. [3, 4]. 

Interpretation: Independent residuals show no 
trends or patterns when displayed in time 
order. Patterns in the data points indicate that 
residuals near each other may be correlated 
and thus not independent. The residuals on the 
plot should fall randomly around the center 
line with a mean of zero and constant variance 
NID(0, σ2) with no recognizable patterns or 
trends in the points, see Figure 3 [4].

Homogeneity
Plotting residuals versus the value of a fitted 
response should produce a distribution of 
points scattered randomly about zero, NID
(0, σ2), regardless of the size of the fitted 
value. Quite commonly, however, residual 
values may increase as the size of the fitted 
value increases. When this happens, the 
residual cloud becomes "funnel-shaped" with 
the larger end toward larger fitted values; that 
is, the residuals have larger and larger scatter 
as the value of the response increases [3, 4]. 

Interpretation: Ideally, the points should fall 
randomly around the center line with a mean 
of zero and constant variance NID(0, σ2) with 
no recognizable patterns, trends, or outliers 
in the points, see Figure 4 [4].

Post-hoc Testing
Suppose the ANOVA indicates a statistical 
difference (p-value < 0.05), and the model 
assumptions have been validated. In that case, 
post-hoc tests are used to identify which 
specific groups differ from each other. Stan-
dard post-hoc tests include Tukey, Fisher, 
Dunnett, and Hsu MCB. The Tukey and 
Fisher tests compare all pairs of groups. The 
Dunnett test compares the treatment groups 
to a control group. In contrast, the Hsu MCB 
test compares each group to the group with 
either the largest or the smallest mean (cho-
sen by the process engineer). The process 
engineer must consider individual and family 
error rates in conjunction with post-hoc 
testing [4].

The individual error rate is the maximum 
probability that one or more comparisons will 
incorrectly conclude that the observed differ-
ence is significantly different from the null 
hypothesis. It is equivalent to the alpha level 
selected (typically 0.05) for the hypothesis 
test. The family error rate is the maximum 
probability that a procedure consisting of 
more than one comparison will incorrectly 
conclude that at least one of the observed 
differences is significantly different from the 
null hypothesis. The family error rate is based 
on both the individual error rate and the 
number of comparisons. It is essential to 
consider the family error rate when making 
multiple comparisons because your chances 
of committing a Type I error for a series of 
comparisons are greater than the error rate 
for any one comparison alone [4]. 

The Tukey test is a robust, widely used, and 
popular post-hoc test. It compares all pairs of 
groups while controlling the simultaneous 
confidence level (SCL). The SCL is the 

Figure 1. A reasonable probability plot.

Figure 3. A reasonable residuals 
versus time order plot.

Figure 4. A reasonable residuals
versus fits plot.

Figure 2. A reasonable histogram.

percentage of times that a group of confi-
dence intervals will all include the true popu-
lation parameters or true differences between 
factor levels if the study were repeated multi-
ple times. The SCL level is based on both the 
individual confidence level and the number of 
confidence intervals. The Tukey family error 
rate is typically controlled at 0.05 (5%). The 
trade-off with Tukey's is the less precise 
confidence intervals and hypothesis tests that 
are less powerful than either Dunnett's or 
Hsu's MCB [4, 6].

Data Acceptance
There are five requirements if conclusions 
drawn from data analysis are to be correct, 
unambiguous, and defensible. These five 
requirements are an equitable sample, stabili-
ty, statistical significance, practical signifi-
cance, and truth. Each of these is discussed 
below.  

Equitable Sample: The sample is representa-
tive of the population. Free from bias and 
confounding. Sample size is sufficient, or 
confirmation runs have been done.

Stability: No unusual conditions when the 
data was collected. No outliers, trends, shifts, 
or non-random patterns. 

Statistically Significant: p-values are real, not 
noise, typically α < 0.05, and residuals are 
normal.

Practical Significance: Is the magnitude of 
difference worthwhile? Does anybody care?

Truth: Can you explain why it is true? Do 
you have a theory? Does the conclusion fit 
with the subject matter knowledge?

A Worked Example
Process characterization is an integral part of 
any continuous improvement program. There 
are many steps in that program for which 
process characterization is required. These 
include instances when we introduce a new 
process or tool for use, as well as when we 
bring a tool or process back online after 
scheduled/unscheduled maintenance, when 
we want to compare tools or processes, when 
we want to check the health of our process 
during the monitoring phase, when we are 
troubleshooting a bad process, or when we 
need to improve a process [3].

A young process engineer is completing a 
process improvement project on her acid 
copper pulse plating tanks, looking to 
improve throwing power. She conducts an 
experiment looking at three different pulse 
recipes. The first pulse recipe (P1) is the 
control (current wave), while recipes P2 and 
P3 are experimental. The test vehicle is an 18” 
x 24” panel with 20:1 aspect ratio holes. The 
engineer plates four panels with each of the 
three pulse recipes and measures the throw-
ing power (Note: the runs are randomized to 
protect against noise variables). The throwing 
power percentages, along with descriptive 
statistics, are shown in Table 4.

The process engineer analyzes the throwing 
power data using an ANOVA. The Recipe 
p-value is less than 0.05, indicating that not 
all means are equal, see Table 5. 

Next, the engineer validates the model by 
examining the residuals. The probability plot 
of the residuals approximately follows a 
straight line. The histogram is ignored due to 
the presence of fewer than 50 data points, 
making interpretation difficult. The residuals 
versus order points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns or trends in the points. The residuals 
versus fit points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns, trends, or outliers in the points. All 
four plots can be seen in Figure 5. The model 
has been validated. The process engineer now 
needs to use a post hoctest to complete pair-
wise comparisons. 

The process engineer decides to use the Tukey 
post hoc test. She uses the grouping informa-
tion table to quickly determine whether the 
mean difference between any pair of groups is 
statistically significant. Groups that do not 
share a letter are significantly different. In 
these results, Table 6 shows that group A 
contains Recipe P3, group B contains Recipe 
P2, and group C contains Recipe P1.

Discussion: The ANOVA model has been built, 
validated, and a post hoc test completed. The 
process engineer concludes that all three 
Recipe means are statistically different; the 
results in the data are unlikely to be explained 
by chance alone. The data acceptance criteria 
has been met: Equitable Sample (18” x 24” 
panel, 20:1 aspect ratio, four test panels), 
Stability (all parameters were in range during 
the testing), Statistical Significance (P-value < 
0.05, and residuals are normal and inde-
pendently distributed with a mean of zero and 
constant variance NID(0, σ2)), Practical Signifi-
cance (36% improvement in throwing power), 
and Truth (significant modifications to the 
pulse waves improve throwing power). Recipe 
P3 has been statistically proven to improve 
throwing power over Recipe P1 by an average 
of 36% (86% – 50%). The process engineer 
concludes her improvement project's data are 
correct, unambiguous, and defensible. She can 
confidently implement the process change.

Conclusions 
The analysis of variance (ANOVA) is over 100 
years old. Today, the ANOVA is the most 
useful technique in the field of statistical infer-
ence. The ANOVA is designed to allow for 
comparisons between multiple groups using a 
single test. The ANOVA work does not stop 
when the model is fit; the model must be 
validated. Validation is accomplished by verify-
ing that the residuals are normally distributed, 
have independence of observations, and have 
homogeneity of variances. When the ANOVA 
indicates a statistical difference, and the model 
assumptions have been validated, a post-hoc 
test is used to identify which specific groups 
differ from each other. The Tukey test is a 
robust, widely used, and popular post-hoc test. 
Finally, data acceptance is based on five 
requirements: equitable sample, stability, 
statistical significance, practical significance, 
and truth. Drawing conclusions from an 
improvement project's data that are correct, 
unambiguous, and defensible is crucial for the 
process engineer. 
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A raw ANOVA table is shown in Table 2, 
followed by the detailed ANOVA calcula-
tions. Finally, the completed ANOVA is 
shown in Table 3.

Descriptive Statistics
Descriptive statistics, such as the mean and 
standard deviation, summarize a set of data 
[4, 5].

Mean of A: 1 + 2 + 3 / 3 = 2
Mean of B: 4 + 5 + 6 / 3 = 5
Mean of C: 7 + 8 + 9 / 3 = 8
Grand Mean: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 
8 + 9 / 9 = 5

Degrees of Freedom
Degrees of freedom (n – 1) are the number of 
independent values that a statistical analysis 
can estimate; more specifically, they define 
how many units within a set can be selected 
without constraints. Let’s say we have three 
numbers that add up to 12. There are two 
degrees of freedom (3 – 1 = 2). After picking 
the first two numbers, there is no freedom to 
choose the last number; it is "determined" by 
the other two numbers. The first and second 
numbers can be any positive or negative 
numbers. For example, if the first number is 
3, the second number is 7, the third number 
must be 2 [4, 5].

Factor: 3 – 1 = 2
Error: 8 – 2 = 6
Total: 9 – 1 = 8

Abstract
Statistical tests are powerful tools that help 
process engineers make better decisions on 
process improvement projects. Drawing con-
clusions from an improvement project's data 
that are correct, unambiguous, and defensible is 
crucial for the process engineer. One of the 
most common parameters of interest with 
improvement projects is the mean. The purpose 
of this paper is to go over the appropriate steps 
for using the analysis of variance with multiple 
mean responses. The analysis of variance is 
reviewed, along with model validation and the 
key data acceptance criteria required. A worked 
example is provided using pulse acid copper 
throwing power. 

Keywords: ANOVA, means, model validation, 
data acceptance, pulse plating

Introduction
The two-sample t-test is used to determine if two 
population means are equal. A typical applica-
tion tests if a new process or treatment is superi-
or to a current one. But what if we have three or 
more means we want to test? The t-test is inap-
propriate for this analysis. 

For example, a young engineer is testing the 
mean brightener concentration in her four acid 
copper pulse plating tanks (A, B, C, D). There 
are six pairwise comparisons: AB, AC, AD, BC, 
BD, CD. Using the t-test, if the probability of 

correctly accepting the null hypothesis for each 
test is 1 – α = 0.95, then the probability of 
correctly accepting the null hypothesis for all six 
tests is (0.95)6 = 0.74, or 74%. In other words, 1 – 
0.74 = 26% chance of committing a Type I error. 
Recall that a Type I error occurs when we reject 
a true null hypothesis (no statistical difference) 
and claim that there is a statistical difference. The 
multiple comparisons cause a significant increase 
in Type I errors. The appropriate procedure for 
testing the equality of several means is the analy-
sis of variance [1].

The Analysis of Variance
The analysis of variance (ANOVA) was invent-
ed by British statistician R.A. Fisher in 1918. 
While the t-test was limited to comparisons 
between two groups, the ANOVA was designed 
to allow for comparisons between multiple 
groups using a single test. The ANOVA gained 
popularity after being included in Fisher’s text, 
Statistical Methods for Research Workers, 
in 1925.

Today, the ANOVA is the most useful tech-
nique in the field of statistical inference. The 
ANOVA is a general linear statistical model 
technique used to test the hypothesis that the 
means of two or more groups are equal. The 
linear function refers to the mathematical 
relationship between the model parameters 
and the dependent variable (y). Specifically, 

the response variable (y) is a linear function of 
the model parameters (the average outcome is 
linearly related to each term in the model) [2].

There are two types of assumptions with the 
ANOVA model. The first assumption is about 
the form of the model. These initial assump-
tions pertain to choosing the correct predictors 
(they are related to the response variable), and 
the average outcome is linearly related to each 
term in the model [2, 3]. 

The second assumption is about the distribu-
tion of the errors (residuals). It is generally 
assumed that the sampled populations are 
approximately normally distributed, the obser-
vations are independent, the variances are 
equal across groups (homogeneity), and the 
observations have been randomly sampled. 
The ANOVA technique is robust to minor 
deviations from normality, independence, and 
homogeneity. You can get clues about whether 
most of these assumptions will be met before 
building the model. But we typically build the 
model first and then verify the assumptions. 
Suppose you've done the foundational work in 
the early steps. In that case, testing assump-
tions is about looking for minor deviations, not 
major transgressions [2, 3].

The ANOVA tests the null hypothesis (H0) 
that two or more population means are equal 
versus the alternative hypothesis (H1) that at 
least one mean is different. Using the formal 
notation of statistical hypotheses, for k means 
we write:

H0: μ1 = μ2 =…= μk

H1: At least one mean is not equal 
to the others

In statistics, the alternative hypothesis can be 
either one-tailed or two-tailed. The one-tailed 
tests are for either inferiority or superiority, 
while the two-tailed tests are for parity (not 
equal). The ANOVA is a bit more complex. 

With ANOVA, we test "not all means are 
equal.” Suppose we are comparing three 
groups; the alternative hypothesis says that at 
least one of the following is true:

Mean 1 is not equal to mean 2.
Mean 1 is not equal to mean 3.
Mean 2 is not equal to mean 3.

As implied, the ANOVA analyzes variances to 
test means. But why analyze variances to derive 
conclusions about the means? Remember that 
“means are different.” And the larger the differ-
ences between the means, the more variation 
there is present. The ANOVA assesses the 
amount of variability between the group means 
in the context of the variation within groups to 
determine whether the mean differences are 
statistically significant. When the ANOVA 
signals statistically significant results (p-value 
< 0.05), indicating that not all means are equal, 
you’ll need to use post hoc tests to complete 
pairwise comparisons.

Let’s look at how the ANOVA works by using 
an example. Table 1 shows three factors (A, B, 
C), with three measured responses per factor, 
along with descriptive statistics. The data is 
fictitious and is presented for explanatory 
purposes only.

Sum of Squares
The sum of the squared deviations of scores 
from their mean. The total sum of squares 
helps express the total variation that can be 
attributed to various factors. The adjusted 
sum of squares is the unique portion of the 
sum of squares explained by a factor, given all 
other factors in the model, regardless of the 
order they were entered into the model [4, 5].

Factor (between the factors): 3 * [(2 – 5)2  + 
(5 – 5)2  + (8 – 5)2] = 54. (Note: “3” is the 
number of levels within the factors, not the 
number of factors, and “5” is the grand mean.)

Error (within the factors):
SS of A: (1 – 2)2 + (2 – 2)2 + (3 - 2)2 = 2
SS of B: (4 – 5)2 + (5 – 5)2 + (6 – 5)2 = 2
SS of C: (7 – 8)2 + (8 – 8)2 + (9 – 8)2 = 2
Error: 2 + 2 + 2 = 6
Total: 54 + 6 = 60

Mean Squares
A term used in the analysis of variance to refer 
to the variance in the data due to a particular 
source of variation. Converting the sum of 
squares into mean squares by dividing by the 
degrees of freedom lets you compare these 
ratios and determine whether there is a 

significant difference. The larger this ratio is, 
the greater the factor's impact on the outcome 
[4, 5].

Factor: 54 / 2 = 27
Error: 6 / 6 = 1

F-value
Calculated by dividing the factor mean square 
by the error mean square. As an alternative to 
calculating the p-value, F-critical can be used. 
The F-critical is found in the F-table, using the 
degrees of freedom for the factor and error, 
F(2, 6). An F-value greater than F-critical 
indicates statistical significance [4, 5].

F-value: 27 / 1 = 27
F-critical: 5.14

P-value
The P-value indicates the probability of 
observing the given F-value (or a more extreme 
value) under the assumption that the null 
hypothesis is true. It is calculated from the 
F-distribution, F(2, 6), using the F-value [4, 5].

F-value: 27
Probability (p-value) of X ≥ 27, F(2, 6) = 0.001

The ANOVA signals statistically significant 
results (P-value < 0.05), indicating that not all 
means are equal. But before action is taken, 
the model needs to be validated by examining 
the residuals. If all looks good, a post hoc test 
needs to be conducted for all pairwise com-
parisons. Finally, a review of the five require-
ments for data acceptance is required.

Model Validation
The ANOVA work does not stop when the 
model is fit. As discussed previously, the second 
assumption is about the distribution of the resid-
uals. If your model is not adequate, it will incor-
rectly represent your data. For example, incor-
rect F- and P-values. Models can be adversely 
affected by as few as one or two points [4].

To validate the model, the assumptions about 
the distribution of the residuals must be met. 
These assumptions include that the residuals are 
normally distributed, have independence of 
observations (no autocorrelation), and have 
homogeneity of variances (equal variances 
across groups). Residuals are elements of varia-
tion unexplained by the model. Since they are a 
form of error, the same general principles apply 
to the group of residuals as would apply to errors 
in general: one expects them to be normal and 
independently distributed (NID) with a mean of 
zero and constant variance NID(0, σ2). Depar-
tures from these assumptions usually mean that 
the residuals contain unaccounted-for informa-
tion. Validating the model helps ensure the 
conclusions drawn are correct, unambiguous, 
and defensible [1, 3].

Normality
Virtually any graph suitable for displaying the 
distribution of a set of data is ideal for judging 
the normality of the distribution of a group of 
residuals. The two most common plots and 
graphs are the normal probability plot and the 
histogram [3, 4].  

Interpretation: The normal probability plot of 
the residuals should approximately follow a 
straight line, see Figure 1. The histogram helps 
identify whether the data are skewed or contain 
outliers, as shown in Figure 2. With histograms, 
it’s best to have at least 50 data points (n ≥ 50) to 
make interpretation robust [4].

Independence
Suppose the order of the observations in a data 
table represents the order of execution of each 
test. In that case, a plot of the residuals of those 
observations versus the time order of the 
observations will test for lack of independence. 
For example, drift in equipment will produce 
models with autocorrelation. [3, 4]. 

Interpretation: Independent residuals show no 
trends or patterns when displayed in time 
order. Patterns in the data points indicate that 
residuals near each other may be correlated 
and thus not independent. The residuals on the 
plot should fall randomly around the center 
line with a mean of zero and constant variance 
NID(0, σ2) with no recognizable patterns or 
trends in the points, see Figure 3 [4].

Homogeneity
Plotting residuals versus the value of a fitted 
response should produce a distribution of 
points scattered randomly about zero, NID
(0, σ2), regardless of the size of the fitted 
value. Quite commonly, however, residual 
values may increase as the size of the fitted 
value increases. When this happens, the 
residual cloud becomes "funnel-shaped" with 
the larger end toward larger fitted values; that 
is, the residuals have larger and larger scatter 
as the value of the response increases [3, 4]. 

Interpretation: Ideally, the points should fall 
randomly around the center line with a mean 
of zero and constant variance NID(0, σ2) with 
no recognizable patterns, trends, or outliers 
in the points, see Figure 4 [4].

Post-hoc Testing
Suppose the ANOVA indicates a statistical 
difference (p-value < 0.05), and the model 
assumptions have been validated. In that case, 
post-hoc tests are used to identify which 
specific groups differ from each other. Stan-
dard post-hoc tests include Tukey, Fisher, 
Dunnett, and Hsu MCB. The Tukey and 
Fisher tests compare all pairs of groups. The 
Dunnett test compares the treatment groups 
to a control group. In contrast, the Hsu MCB 
test compares each group to the group with 
either the largest or the smallest mean (cho-
sen by the process engineer). The process 
engineer must consider individual and family 
error rates in conjunction with post-hoc 
testing [4].

The individual error rate is the maximum 
probability that one or more comparisons will 
incorrectly conclude that the observed differ-
ence is significantly different from the null 
hypothesis. It is equivalent to the alpha level 
selected (typically 0.05) for the hypothesis 
test. The family error rate is the maximum 
probability that a procedure consisting of 
more than one comparison will incorrectly 
conclude that at least one of the observed 
differences is significantly different from the 
null hypothesis. The family error rate is based 
on both the individual error rate and the 
number of comparisons. It is essential to 
consider the family error rate when making 
multiple comparisons because your chances 
of committing a Type I error for a series of 
comparisons are greater than the error rate 
for any one comparison alone [4]. 

The Tukey test is a robust, widely used, and 
popular post-hoc test. It compares all pairs of 
groups while controlling the simultaneous 
confidence level (SCL). The SCL is the 

percentage of times that a group of confi-
dence intervals will all include the true popu-
lation parameters or true differences between 
factor levels if the study were repeated multi-
ple times. The SCL level is based on both the 
individual confidence level and the number of 
confidence intervals. The Tukey family error 
rate is typically controlled at 0.05 (5%). The 
trade-off with Tukey's is the less precise 
confidence intervals and hypothesis tests that 
are less powerful than either Dunnett's or 
Hsu's MCB [4, 6].

Data Acceptance
There are five requirements if conclusions 
drawn from data analysis are to be correct, 
unambiguous, and defensible. These five 
requirements are an equitable sample, stabili-
ty, statistical significance, practical signifi-
cance, and truth. Each of these is discussed 
below.  

Equitable Sample: The sample is representa-
tive of the population. Free from bias and 
confounding. Sample size is sufficient, or 
confirmation runs have been done.

Stability: No unusual conditions when the 
data was collected. No outliers, trends, shifts, 
or non-random patterns. 

Statistically Significant: p-values are real, not 
noise, typically α < 0.05, and residuals are 
normal.

Practical Significance: Is the magnitude of 
difference worthwhile? Does anybody care?

Truth: Can you explain why it is true? Do 
you have a theory? Does the conclusion fit 
with the subject matter knowledge?

A Worked Example
Process characterization is an integral part of 
any continuous improvement program. There 
are many steps in that program for which 
process characterization is required. These 
include instances when we introduce a new 
process or tool for use, as well as when we 
bring a tool or process back online after 
scheduled/unscheduled maintenance, when 
we want to compare tools or processes, when 
we want to check the health of our process 
during the monitoring phase, when we are 
troubleshooting a bad process, or when we 
need to improve a process [3].

A young process engineer is completing a 
process improvement project on her acid 
copper pulse plating tanks, looking to 
improve throwing power. She conducts an 
experiment looking at three different pulse 
recipes. The first pulse recipe (P1) is the 
control (current wave), while recipes P2 and 
P3 are experimental. The test vehicle is an 18” 
x 24” panel with 20:1 aspect ratio holes. The 
engineer plates four panels with each of the 
three pulse recipes and measures the throw-
ing power (Note: the runs are randomized to 
protect against noise variables). The throwing 
power percentages, along with descriptive 
statistics, are shown in Table 4.

The process engineer analyzes the throwing 
power data using an ANOVA. The Recipe 
p-value is less than 0.05, indicating that not 
all means are equal, see Table 5. 

Next, the engineer validates the model by 
examining the residuals. The probability plot 
of the residuals approximately follows a 
straight line. The histogram is ignored due to 
the presence of fewer than 50 data points, 
making interpretation difficult. The residuals 
versus order points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns or trends in the points. The residuals 
versus fit points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns, trends, or outliers in the points. All 
four plots can be seen in Figure 5. The model 
has been validated. The process engineer now 
needs to use a post hoctest to complete pair-
wise comparisons. 

The process engineer decides to use the Tukey 
post hoc test. She uses the grouping informa-
tion table to quickly determine whether the 
mean difference between any pair of groups is 
statistically significant. Groups that do not 
share a letter are significantly different. In 
these results, Table 6 shows that group A 
contains Recipe P3, group B contains Recipe 
P2, and group C contains Recipe P1.

Discussion: The ANOVA model has been built, 
validated, and a post hoc test completed. The 
process engineer concludes that all three 
Recipe means are statistically different; the 
results in the data are unlikely to be explained 
by chance alone. The data acceptance criteria 
has been met: Equitable Sample (18” x 24” 
panel, 20:1 aspect ratio, four test panels), 
Stability (all parameters were in range during 
the testing), Statistical Significance (P-value < 
0.05, and residuals are normal and inde-
pendently distributed with a mean of zero and 
constant variance NID(0, σ2)), Practical Signifi-
cance (36% improvement in throwing power), 
and Truth (significant modifications to the 
pulse waves improve throwing power). Recipe 
P3 has been statistically proven to improve 
throwing power over Recipe P1 by an average 
of 36% (86% – 50%). The process engineer 
concludes her improvement project's data are 
correct, unambiguous, and defensible. She can 
confidently implement the process change.

Conclusions 
The analysis of variance (ANOVA) is over 100 
years old. Today, the ANOVA is the most 
useful technique in the field of statistical infer-
ence. The ANOVA is designed to allow for 
comparisons between multiple groups using a 
single test. The ANOVA work does not stop 
when the model is fit; the model must be 
validated. Validation is accomplished by verify-
ing that the residuals are normally distributed, 
have independence of observations, and have 
homogeneity of variances. When the ANOVA 
indicates a statistical difference, and the model 
assumptions have been validated, a post-hoc 
test is used to identify which specific groups 
differ from each other. The Tukey test is a 
robust, widely used, and popular post-hoc test. 
Finally, data acceptance is based on five 
requirements: equitable sample, stability, 
statistical significance, practical significance, 
and truth. Drawing conclusions from an 
improvement project's data that are correct, 
unambiguous, and defensible is crucial for the 
process engineer. 
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A raw ANOVA table is shown in Table 2, 
followed by the detailed ANOVA calcula-
tions. Finally, the completed ANOVA is 
shown in Table 3.

Descriptive Statistics
Descriptive statistics, such as the mean and 
standard deviation, summarize a set of data 
[4, 5].

Mean of A: 1 + 2 + 3 / 3 = 2
Mean of B: 4 + 5 + 6 / 3 = 5
Mean of C: 7 + 8 + 9 / 3 = 8
Grand Mean: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 
8 + 9 / 9 = 5

Degrees of Freedom
Degrees of freedom (n – 1) are the number of 
independent values that a statistical analysis 
can estimate; more specifically, they define 
how many units within a set can be selected 
without constraints. Let’s say we have three 
numbers that add up to 12. There are two 
degrees of freedom (3 – 1 = 2). After picking 
the first two numbers, there is no freedom to 
choose the last number; it is "determined" by 
the other two numbers. The first and second 
numbers can be any positive or negative 
numbers. For example, if the first number is 
3, the second number is 7, the third number 
must be 2 [4, 5].

Factor: 3 – 1 = 2
Error: 8 – 2 = 6
Total: 9 – 1 = 8
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Introduction
The two-sample t-test is used to determine if two 
population means are equal. A typical applica-
tion tests if a new process or treatment is superi-
or to a current one. But what if we have three or 
more means we want to test? The t-test is inap-
propriate for this analysis. 

For example, a young engineer is testing the 
mean brightener concentration in her four acid 
copper pulse plating tanks (A, B, C, D). There 
are six pairwise comparisons: AB, AC, AD, BC, 
BD, CD. Using the t-test, if the probability of 

correctly accepting the null hypothesis for each 
test is 1 – α = 0.95, then the probability of 
correctly accepting the null hypothesis for all six 
tests is (0.95)6 = 0.74, or 74%. In other words, 1 – 
0.74 = 26% chance of committing a Type I error. 
Recall that a Type I error occurs when we reject 
a true null hypothesis (no statistical difference) 
and claim that there is a statistical difference. The 
multiple comparisons cause a significant increase 
in Type I errors. The appropriate procedure for 
testing the equality of several means is the analy-
sis of variance [1].

The Analysis of Variance
The analysis of variance (ANOVA) was invent-
ed by British statistician R.A. Fisher in 1918. 
While the t-test was limited to comparisons 
between two groups, the ANOVA was designed 
to allow for comparisons between multiple 
groups using a single test. The ANOVA gained 
popularity after being included in Fisher’s text, 
Statistical Methods for Research Workers, 
in 1925.

Today, the ANOVA is the most useful tech-
nique in the field of statistical inference. The 
ANOVA is a general linear statistical model 
technique used to test the hypothesis that the 
means of two or more groups are equal. The 
linear function refers to the mathematical 
relationship between the model parameters 
and the dependent variable (y). Specifically, 

the response variable (y) is a linear function of 
the model parameters (the average outcome is 
linearly related to each term in the model) [2].

There are two types of assumptions with the 
ANOVA model. The first assumption is about 
the form of the model. These initial assump-
tions pertain to choosing the correct predictors 
(they are related to the response variable), and 
the average outcome is linearly related to each 
term in the model [2, 3]. 

The second assumption is about the distribu-
tion of the errors (residuals). It is generally 
assumed that the sampled populations are 
approximately normally distributed, the obser-
vations are independent, the variances are 
equal across groups (homogeneity), and the 
observations have been randomly sampled. 
The ANOVA technique is robust to minor 
deviations from normality, independence, and 
homogeneity. You can get clues about whether 
most of these assumptions will be met before 
building the model. But we typically build the 
model first and then verify the assumptions. 
Suppose you've done the foundational work in 
the early steps. In that case, testing assump-
tions is about looking for minor deviations, not 
major transgressions [2, 3].

The ANOVA tests the null hypothesis (H0) 
that two or more population means are equal 
versus the alternative hypothesis (H1) that at 
least one mean is different. Using the formal 
notation of statistical hypotheses, for k means 
we write:

H0: μ1 = μ2 =…= μk

H1: At least one mean is not equal 
to the others

In statistics, the alternative hypothesis can be 
either one-tailed or two-tailed. The one-tailed 
tests are for either inferiority or superiority, 
while the two-tailed tests are for parity (not 
equal). The ANOVA is a bit more complex. 

With ANOVA, we test "not all means are 
equal.” Suppose we are comparing three 
groups; the alternative hypothesis says that at 
least one of the following is true:

Mean 1 is not equal to mean 2.
Mean 1 is not equal to mean 3.
Mean 2 is not equal to mean 3.

As implied, the ANOVA analyzes variances to 
test means. But why analyze variances to derive 
conclusions about the means? Remember that 
“means are different.” And the larger the differ-
ences between the means, the more variation 
there is present. The ANOVA assesses the 
amount of variability between the group means 
in the context of the variation within groups to 
determine whether the mean differences are 
statistically significant. When the ANOVA 
signals statistically significant results (p-value 
< 0.05), indicating that not all means are equal, 
you’ll need to use post hoc tests to complete 
pairwise comparisons.

Let’s look at how the ANOVA works by using 
an example. Table 1 shows three factors (A, B, 
C), with three measured responses per factor, 
along with descriptive statistics. The data is 
fictitious and is presented for explanatory 
purposes only.

Sum of Squares
The sum of the squared deviations of scores 
from their mean. The total sum of squares 
helps express the total variation that can be 
attributed to various factors. The adjusted 
sum of squares is the unique portion of the 
sum of squares explained by a factor, given all 
other factors in the model, regardless of the 
order they were entered into the model [4, 5].

Factor (between the factors): 3 * [(2 – 5)2  + 
(5 – 5)2  + (8 – 5)2] = 54. (Note: “3” is the 
number of levels within the factors, not the 
number of factors, and “5” is the grand mean.)

Error (within the factors):
SS of A: (1 – 2)2 + (2 – 2)2 + (3 - 2)2 = 2
SS of B: (4 – 5)2 + (5 – 5)2 + (6 – 5)2 = 2
SS of C: (7 – 8)2 + (8 – 8)2 + (9 – 8)2 = 2
Error: 2 + 2 + 2 = 6
Total: 54 + 6 = 60

Mean Squares
A term used in the analysis of variance to refer 
to the variance in the data due to a particular 
source of variation. Converting the sum of 
squares into mean squares by dividing by the 
degrees of freedom lets you compare these 
ratios and determine whether there is a 

significant difference. The larger this ratio is, 
the greater the factor's impact on the outcome 
[4, 5].

Factor: 54 / 2 = 27
Error: 6 / 6 = 1

F-value
Calculated by dividing the factor mean square 
by the error mean square. As an alternative to 
calculating the p-value, F-critical can be used. 
The F-critical is found in the F-table, using the 
degrees of freedom for the factor and error, 
F(2, 6). An F-value greater than F-critical 
indicates statistical significance [4, 5].

F-value: 27 / 1 = 27
F-critical: 5.14

P-value
The P-value indicates the probability of 
observing the given F-value (or a more extreme 
value) under the assumption that the null 
hypothesis is true. It is calculated from the 
F-distribution, F(2, 6), using the F-value [4, 5].

F-value: 27
Probability (p-value) of X ≥ 27, F(2, 6) = 0.001

The ANOVA signals statistically significant 
results (P-value < 0.05), indicating that not all 
means are equal. But before action is taken, 
the model needs to be validated by examining 
the residuals. If all looks good, a post hoc test 
needs to be conducted for all pairwise com-
parisons. Finally, a review of the five require-
ments for data acceptance is required.

Model Validation
The ANOVA work does not stop when the 
model is fit. As discussed previously, the second 
assumption is about the distribution of the resid-
uals. If your model is not adequate, it will incor-
rectly represent your data. For example, incor-
rect F- and P-values. Models can be adversely 
affected by as few as one or two points [4].

To validate the model, the assumptions about 
the distribution of the residuals must be met. 
These assumptions include that the residuals are 
normally distributed, have independence of 
observations (no autocorrelation), and have 
homogeneity of variances (equal variances 
across groups). Residuals are elements of varia-
tion unexplained by the model. Since they are a 
form of error, the same general principles apply 
to the group of residuals as would apply to errors 
in general: one expects them to be normal and 
independently distributed (NID) with a mean of 
zero and constant variance NID(0, σ2). Depar-
tures from these assumptions usually mean that 
the residuals contain unaccounted-for informa-
tion. Validating the model helps ensure the 
conclusions drawn are correct, unambiguous, 
and defensible [1, 3].

Normality
Virtually any graph suitable for displaying the 
distribution of a set of data is ideal for judging 
the normality of the distribution of a group of 
residuals. The two most common plots and 
graphs are the normal probability plot and the 
histogram [3, 4].  

Interpretation: The normal probability plot of 
the residuals should approximately follow a 
straight line, see Figure 1. The histogram helps 
identify whether the data are skewed or contain 
outliers, as shown in Figure 2. With histograms, 
it’s best to have at least 50 data points (n ≥ 50) to 
make interpretation robust [4].

Independence
Suppose the order of the observations in a data 
table represents the order of execution of each 
test. In that case, a plot of the residuals of those 
observations versus the time order of the 
observations will test for lack of independence. 
For example, drift in equipment will produce 
models with autocorrelation. [3, 4]. 

Interpretation: Independent residuals show no 
trends or patterns when displayed in time 
order. Patterns in the data points indicate that 
residuals near each other may be correlated 
and thus not independent. The residuals on the 
plot should fall randomly around the center 
line with a mean of zero and constant variance 
NID(0, σ2) with no recognizable patterns or 
trends in the points, see Figure 3 [4].

Homogeneity
Plotting residuals versus the value of a fitted 
response should produce a distribution of 
points scattered randomly about zero, NID
(0, σ2), regardless of the size of the fitted 
value. Quite commonly, however, residual 
values may increase as the size of the fitted 
value increases. When this happens, the 
residual cloud becomes "funnel-shaped" with 
the larger end toward larger fitted values; that 
is, the residuals have larger and larger scatter 
as the value of the response increases [3, 4]. 

Interpretation: Ideally, the points should fall 
randomly around the center line with a mean 
of zero and constant variance NID(0, σ2) with 
no recognizable patterns, trends, or outliers 
in the points, see Figure 4 [4].

Post-hoc Testing
Suppose the ANOVA indicates a statistical 
difference (p-value < 0.05), and the model 
assumptions have been validated. In that case, 
post-hoc tests are used to identify which 
specific groups differ from each other. Stan-
dard post-hoc tests include Tukey, Fisher, 
Dunnett, and Hsu MCB. The Tukey and 
Fisher tests compare all pairs of groups. The 
Dunnett test compares the treatment groups 
to a control group. In contrast, the Hsu MCB 
test compares each group to the group with 
either the largest or the smallest mean (cho-
sen by the process engineer). The process 
engineer must consider individual and family 
error rates in conjunction with post-hoc 
testing [4].

The individual error rate is the maximum 
probability that one or more comparisons will 
incorrectly conclude that the observed differ-
ence is significantly different from the null 
hypothesis. It is equivalent to the alpha level 
selected (typically 0.05) for the hypothesis 
test. The family error rate is the maximum 
probability that a procedure consisting of 
more than one comparison will incorrectly 
conclude that at least one of the observed 
differences is significantly different from the 
null hypothesis. The family error rate is based 
on both the individual error rate and the 
number of comparisons. It is essential to 
consider the family error rate when making 
multiple comparisons because your chances 
of committing a Type I error for a series of 
comparisons are greater than the error rate 
for any one comparison alone [4]. 

The Tukey test is a robust, widely used, and 
popular post-hoc test. It compares all pairs of 
groups while controlling the simultaneous 
confidence level (SCL). The SCL is the 

percentage of times that a group of confi-
dence intervals will all include the true popu-
lation parameters or true differences between 
factor levels if the study were repeated multi-
ple times. The SCL level is based on both the 
individual confidence level and the number of 
confidence intervals. The Tukey family error 
rate is typically controlled at 0.05 (5%). The 
trade-off with Tukey's is the less precise 
confidence intervals and hypothesis tests that 
are less powerful than either Dunnett's or 
Hsu's MCB [4, 6].

Data Acceptance
There are five requirements if conclusions 
drawn from data analysis are to be correct, 
unambiguous, and defensible. These five 
requirements are an equitable sample, stabili-
ty, statistical significance, practical signifi-
cance, and truth. Each of these is discussed 
below.  

Equitable Sample: The sample is representa-
tive of the population. Free from bias and 
confounding. Sample size is sufficient, or 
confirmation runs have been done.

Stability: No unusual conditions when the 
data was collected. No outliers, trends, shifts, 
or non-random patterns. 

Statistically Significant: p-values are real, not 
noise, typically α < 0.05, and residuals are 
normal.

Practical Significance: Is the magnitude of 
difference worthwhile? Does anybody care?

Truth: Can you explain why it is true? Do 
you have a theory? Does the conclusion fit 
with the subject matter knowledge?

A Worked Example
Process characterization is an integral part of 
any continuous improvement program. There 
are many steps in that program for which 
process characterization is required. These 
include instances when we introduce a new 
process or tool for use, as well as when we 
bring a tool or process back online after 
scheduled/unscheduled maintenance, when 
we want to compare tools or processes, when 
we want to check the health of our process 
during the monitoring phase, when we are 
troubleshooting a bad process, or when we 
need to improve a process [3].

A young process engineer is completing a 
process improvement project on her acid 
copper pulse plating tanks, looking to 
improve throwing power. She conducts an 
experiment looking at three different pulse 
recipes. The first pulse recipe (P1) is the 
control (current wave), while recipes P2 and 
P3 are experimental. The test vehicle is an 18” 
x 24” panel with 20:1 aspect ratio holes. The 
engineer plates four panels with each of the 
three pulse recipes and measures the throw-
ing power (Note: the runs are randomized to 
protect against noise variables). The throwing 
power percentages, along with descriptive 
statistics, are shown in Table 4.

Table 4. Throwing power percentages 
and descripive statistics.

 Recipe P1 Recipe P2 Recipe P3

 56 69 80

 48 66 85

 47 74 91

 52 75 88

Mean: 50.8 71.0 86.0

Std Dev: 4.1 4.2 4.7

Table 5. Pulse recipe ANOVA.

Source DF Adj SS ADj MS F-Value P-Value

Recipe 2  2503.5 1251.75 65.98 0.000

Error 9 170.7 8.97

Total 11 2647.2

The process engineer analyzes the throwing 
power data using an ANOVA. The Recipe 
p-value is less than 0.05, indicating that not 
all means are equal, see Table 5. 

Next, the engineer validates the model by 
examining the residuals. The probability plot 
of the residuals approximately follows a 
straight line. The histogram is ignored due to 
the presence of fewer than 50 data points, 
making interpretation difficult. The residuals 
versus order points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns or trends in the points. The residuals 
versus fit points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns, trends, or outliers in the points. All 
four plots can be seen in Figure 5. The model 
has been validated. The process engineer now 
needs to use a post hoctest to complete pair-
wise comparisons. 

Figure 5. Four-in-one residual plot.

The process engineer decides to use the Tukey 
post hoc test. She uses the grouping informa-
tion table to quickly determine whether the 
mean difference between any pair of groups is 
statistically significant. Groups that do not 
share a letter are significantly different. In 
these results, Table 6 shows that group A 
contains Recipe P3, group B contains Recipe 
P2, and group C contains Recipe P1.

Discussion: The ANOVA model has been built, 
validated, and a post hoc test completed. The 
process engineer concludes that all three 
Recipe means are statistically different; the 
results in the data are unlikely to be explained 
by chance alone. The data acceptance criteria 
has been met: Equitable Sample (18” x 24” 
panel, 20:1 aspect ratio, four test panels), 
Stability (all parameters were in range during 
the testing), Statistical Significance (P-value < 
0.05, and residuals are normal and inde-
pendently distributed with a mean of zero and 
constant variance NID(0, σ2)), Practical Signifi-
cance (36% improvement in throwing power), 
and Truth (significant modifications to the 
pulse waves improve throwing power). Recipe 
P3 has been statistically proven to improve 
throwing power over Recipe P1 by an average 
of 36% (86% – 50%). The process engineer 
concludes her improvement project's data are 
correct, unambiguous, and defensible. She can 
confidently implement the process change.

Conclusions 
The analysis of variance (ANOVA) is over 100 
years old. Today, the ANOVA is the most 
useful technique in the field of statistical infer-
ence. The ANOVA is designed to allow for 
comparisons between multiple groups using a 
single test. The ANOVA work does not stop 
when the model is fit; the model must be 
validated. Validation is accomplished by verify-
ing that the residuals are normally distributed, 
have independence of observations, and have 
homogeneity of variances. When the ANOVA 
indicates a statistical difference, and the model 
assumptions have been validated, a post-hoc 
test is used to identify which specific groups 
differ from each other. The Tukey test is a 
robust, widely used, and popular post-hoc test. 
Finally, data acceptance is based on five 
requirements: equitable sample, stability, 
statistical significance, practical significance, 
and truth. Drawing conclusions from an 
improvement project's data that are correct, 
unambiguous, and defensible is crucial for the 
process engineer. 
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A raw ANOVA table is shown in Table 2, 
followed by the detailed ANOVA calcula-
tions. Finally, the completed ANOVA is 
shown in Table 3.

Descriptive Statistics
Descriptive statistics, such as the mean and 
standard deviation, summarize a set of data 
[4, 5].

Mean of A: 1 + 2 + 3 / 3 = 2
Mean of B: 4 + 5 + 6 / 3 = 5
Mean of C: 7 + 8 + 9 / 3 = 8
Grand Mean: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 
8 + 9 / 9 = 5

Degrees of Freedom
Degrees of freedom (n – 1) are the number of 
independent values that a statistical analysis 
can estimate; more specifically, they define 
how many units within a set can be selected 
without constraints. Let’s say we have three 
numbers that add up to 12. There are two 
degrees of freedom (3 – 1 = 2). After picking 
the first two numbers, there is no freedom to 
choose the last number; it is "determined" by 
the other two numbers. The first and second 
numbers can be any positive or negative 
numbers. For example, if the first number is 
3, the second number is 7, the third number 
must be 2 [4, 5].

Factor: 3 – 1 = 2
Error: 8 – 2 = 6
Total: 9 – 1 = 8

Abstract
Statistical tests are powerful tools that help 
process engineers make better decisions on 
process improvement projects. Drawing con-
clusions from an improvement project's data 
that are correct, unambiguous, and defensible is 
crucial for the process engineer. One of the 
most common parameters of interest with 
improvement projects is the mean. The purpose 
of this paper is to go over the appropriate steps 
for using the analysis of variance with multiple 
mean responses. The analysis of variance is 
reviewed, along with model validation and the 
key data acceptance criteria required. A worked 
example is provided using pulse acid copper 
throwing power. 
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Introduction
The two-sample t-test is used to determine if two 
population means are equal. A typical applica-
tion tests if a new process or treatment is superi-
or to a current one. But what if we have three or 
more means we want to test? The t-test is inap-
propriate for this analysis. 

For example, a young engineer is testing the 
mean brightener concentration in her four acid 
copper pulse plating tanks (A, B, C, D). There 
are six pairwise comparisons: AB, AC, AD, BC, 
BD, CD. Using the t-test, if the probability of 

correctly accepting the null hypothesis for each 
test is 1 – α = 0.95, then the probability of 
correctly accepting the null hypothesis for all six 
tests is (0.95)6 = 0.74, or 74%. In other words, 1 – 
0.74 = 26% chance of committing a Type I error. 
Recall that a Type I error occurs when we reject 
a true null hypothesis (no statistical difference) 
and claim that there is a statistical difference. The 
multiple comparisons cause a significant increase 
in Type I errors. The appropriate procedure for 
testing the equality of several means is the analy-
sis of variance [1].

The Analysis of Variance
The analysis of variance (ANOVA) was invent-
ed by British statistician R.A. Fisher in 1918. 
While the t-test was limited to comparisons 
between two groups, the ANOVA was designed 
to allow for comparisons between multiple 
groups using a single test. The ANOVA gained 
popularity after being included in Fisher’s text, 
Statistical Methods for Research Workers, 
in 1925.

Today, the ANOVA is the most useful tech-
nique in the field of statistical inference. The 
ANOVA is a general linear statistical model 
technique used to test the hypothesis that the 
means of two or more groups are equal. The 
linear function refers to the mathematical 
relationship between the model parameters 
and the dependent variable (y). Specifically, 

the response variable (y) is a linear function of 
the model parameters (the average outcome is 
linearly related to each term in the model) [2].

There are two types of assumptions with the 
ANOVA model. The first assumption is about 
the form of the model. These initial assump-
tions pertain to choosing the correct predictors 
(they are related to the response variable), and 
the average outcome is linearly related to each 
term in the model [2, 3]. 

The second assumption is about the distribu-
tion of the errors (residuals). It is generally 
assumed that the sampled populations are 
approximately normally distributed, the obser-
vations are independent, the variances are 
equal across groups (homogeneity), and the 
observations have been randomly sampled. 
The ANOVA technique is robust to minor 
deviations from normality, independence, and 
homogeneity. You can get clues about whether 
most of these assumptions will be met before 
building the model. But we typically build the 
model first and then verify the assumptions. 
Suppose you've done the foundational work in 
the early steps. In that case, testing assump-
tions is about looking for minor deviations, not 
major transgressions [2, 3].

The ANOVA tests the null hypothesis (H0) 
that two or more population means are equal 
versus the alternative hypothesis (H1) that at 
least one mean is different. Using the formal 
notation of statistical hypotheses, for k means 
we write:

H0: μ1 = μ2 =…= μk

H1: At least one mean is not equal 
to the others

In statistics, the alternative hypothesis can be 
either one-tailed or two-tailed. The one-tailed 
tests are for either inferiority or superiority, 
while the two-tailed tests are for parity (not 
equal). The ANOVA is a bit more complex. 

With ANOVA, we test "not all means are 
equal.” Suppose we are comparing three 
groups; the alternative hypothesis says that at 
least one of the following is true:

Mean 1 is not equal to mean 2.
Mean 1 is not equal to mean 3.
Mean 2 is not equal to mean 3.

As implied, the ANOVA analyzes variances to 
test means. But why analyze variances to derive 
conclusions about the means? Remember that 
“means are different.” And the larger the differ-
ences between the means, the more variation 
there is present. The ANOVA assesses the 
amount of variability between the group means 
in the context of the variation within groups to 
determine whether the mean differences are 
statistically significant. When the ANOVA 
signals statistically significant results (p-value 
< 0.05), indicating that not all means are equal, 
you’ll need to use post hoc tests to complete 
pairwise comparisons.

Let’s look at how the ANOVA works by using 
an example. Table 1 shows three factors (A, B, 
C), with three measured responses per factor, 
along with descriptive statistics. The data is 
fictitious and is presented for explanatory 
purposes only.

Sum of Squares
The sum of the squared deviations of scores 
from their mean. The total sum of squares 
helps express the total variation that can be 
attributed to various factors. The adjusted 
sum of squares is the unique portion of the 
sum of squares explained by a factor, given all 
other factors in the model, regardless of the 
order they were entered into the model [4, 5].

Factor (between the factors): 3 * [(2 – 5)2  + 
(5 – 5)2  + (8 – 5)2] = 54. (Note: “3” is the 
number of levels within the factors, not the 
number of factors, and “5” is the grand mean.)

Error (within the factors):
SS of A: (1 – 2)2 + (2 – 2)2 + (3 - 2)2 = 2
SS of B: (4 – 5)2 + (5 – 5)2 + (6 – 5)2 = 2
SS of C: (7 – 8)2 + (8 – 8)2 + (9 – 8)2 = 2
Error: 2 + 2 + 2 = 6
Total: 54 + 6 = 60

Mean Squares
A term used in the analysis of variance to refer 
to the variance in the data due to a particular 
source of variation. Converting the sum of 
squares into mean squares by dividing by the 
degrees of freedom lets you compare these 
ratios and determine whether there is a 

significant difference. The larger this ratio is, 
the greater the factor's impact on the outcome 
[4, 5].

Factor: 54 / 2 = 27
Error: 6 / 6 = 1

F-value
Calculated by dividing the factor mean square 
by the error mean square. As an alternative to 
calculating the p-value, F-critical can be used. 
The F-critical is found in the F-table, using the 
degrees of freedom for the factor and error, 
F(2, 6). An F-value greater than F-critical 
indicates statistical significance [4, 5].

F-value: 27 / 1 = 27
F-critical: 5.14

P-value
The P-value indicates the probability of 
observing the given F-value (or a more extreme 
value) under the assumption that the null 
hypothesis is true. It is calculated from the 
F-distribution, F(2, 6), using the F-value [4, 5].

F-value: 27
Probability (p-value) of X ≥ 27, F(2, 6) = 0.001

The ANOVA signals statistically significant 
results (P-value < 0.05), indicating that not all 
means are equal. But before action is taken, 
the model needs to be validated by examining 
the residuals. If all looks good, a post hoc test 
needs to be conducted for all pairwise com-
parisons. Finally, a review of the five require-
ments for data acceptance is required.

Model Validation
The ANOVA work does not stop when the 
model is fit. As discussed previously, the second 
assumption is about the distribution of the resid-
uals. If your model is not adequate, it will incor-
rectly represent your data. For example, incor-
rect F- and P-values. Models can be adversely 
affected by as few as one or two points [4].

To validate the model, the assumptions about 
the distribution of the residuals must be met. 
These assumptions include that the residuals are 
normally distributed, have independence of 
observations (no autocorrelation), and have 
homogeneity of variances (equal variances 
across groups). Residuals are elements of varia-
tion unexplained by the model. Since they are a 
form of error, the same general principles apply 
to the group of residuals as would apply to errors 
in general: one expects them to be normal and 
independently distributed (NID) with a mean of 
zero and constant variance NID(0, σ2). Depar-
tures from these assumptions usually mean that 
the residuals contain unaccounted-for informa-
tion. Validating the model helps ensure the 
conclusions drawn are correct, unambiguous, 
and defensible [1, 3].

Normality
Virtually any graph suitable for displaying the 
distribution of a set of data is ideal for judging 
the normality of the distribution of a group of 
residuals. The two most common plots and 
graphs are the normal probability plot and the 
histogram [3, 4].  

Interpretation: The normal probability plot of 
the residuals should approximately follow a 
straight line, see Figure 1. The histogram helps 
identify whether the data are skewed or contain 
outliers, as shown in Figure 2. With histograms, 
it’s best to have at least 50 data points (n ≥ 50) to 
make interpretation robust [4].

Independence
Suppose the order of the observations in a data 
table represents the order of execution of each 
test. In that case, a plot of the residuals of those 
observations versus the time order of the 
observations will test for lack of independence. 
For example, drift in equipment will produce 
models with autocorrelation. [3, 4]. 

Interpretation: Independent residuals show no 
trends or patterns when displayed in time 
order. Patterns in the data points indicate that 
residuals near each other may be correlated 
and thus not independent. The residuals on the 
plot should fall randomly around the center 
line with a mean of zero and constant variance 
NID(0, σ2) with no recognizable patterns or 
trends in the points, see Figure 3 [4].

Homogeneity
Plotting residuals versus the value of a fitted 
response should produce a distribution of 
points scattered randomly about zero, NID
(0, σ2), regardless of the size of the fitted 
value. Quite commonly, however, residual 
values may increase as the size of the fitted 
value increases. When this happens, the 
residual cloud becomes "funnel-shaped" with 
the larger end toward larger fitted values; that 
is, the residuals have larger and larger scatter 
as the value of the response increases [3, 4]. 

Interpretation: Ideally, the points should fall 
randomly around the center line with a mean 
of zero and constant variance NID(0, σ2) with 
no recognizable patterns, trends, or outliers 
in the points, see Figure 4 [4].

Post-hoc Testing
Suppose the ANOVA indicates a statistical 
difference (p-value < 0.05), and the model 
assumptions have been validated. In that case, 
post-hoc tests are used to identify which 
specific groups differ from each other. Stan-
dard post-hoc tests include Tukey, Fisher, 
Dunnett, and Hsu MCB. The Tukey and 
Fisher tests compare all pairs of groups. The 
Dunnett test compares the treatment groups 
to a control group. In contrast, the Hsu MCB 
test compares each group to the group with 
either the largest or the smallest mean (cho-
sen by the process engineer). The process 
engineer must consider individual and family 
error rates in conjunction with post-hoc 
testing [4].

The individual error rate is the maximum 
probability that one or more comparisons will 
incorrectly conclude that the observed differ-
ence is significantly different from the null 
hypothesis. It is equivalent to the alpha level 
selected (typically 0.05) for the hypothesis 
test. The family error rate is the maximum 
probability that a procedure consisting of 
more than one comparison will incorrectly 
conclude that at least one of the observed 
differences is significantly different from the 
null hypothesis. The family error rate is based 
on both the individual error rate and the 
number of comparisons. It is essential to 
consider the family error rate when making 
multiple comparisons because your chances 
of committing a Type I error for a series of 
comparisons are greater than the error rate 
for any one comparison alone [4]. 

The Tukey test is a robust, widely used, and 
popular post-hoc test. It compares all pairs of 
groups while controlling the simultaneous 
confidence level (SCL). The SCL is the 

percentage of times that a group of confi-
dence intervals will all include the true popu-
lation parameters or true differences between 
factor levels if the study were repeated multi-
ple times. The SCL level is based on both the 
individual confidence level and the number of 
confidence intervals. The Tukey family error 
rate is typically controlled at 0.05 (5%). The 
trade-off with Tukey's is the less precise 
confidence intervals and hypothesis tests that 
are less powerful than either Dunnett's or 
Hsu's MCB [4, 6].

Data Acceptance
There are five requirements if conclusions 
drawn from data analysis are to be correct, 
unambiguous, and defensible. These five 
requirements are an equitable sample, stabili-
ty, statistical significance, practical signifi-
cance, and truth. Each of these is discussed 
below.  

Equitable Sample: The sample is representa-
tive of the population. Free from bias and 
confounding. Sample size is sufficient, or 
confirmation runs have been done.

Stability: No unusual conditions when the 
data was collected. No outliers, trends, shifts, 
or non-random patterns. 

Statistically Significant: p-values are real, not 
noise, typically α < 0.05, and residuals are 
normal.

Practical Significance: Is the magnitude of 
difference worthwhile? Does anybody care?

Truth: Can you explain why it is true? Do 
you have a theory? Does the conclusion fit 
with the subject matter knowledge?

A Worked Example
Process characterization is an integral part of 
any continuous improvement program. There 
are many steps in that program for which 
process characterization is required. These 
include instances when we introduce a new 
process or tool for use, as well as when we 
bring a tool or process back online after 
scheduled/unscheduled maintenance, when 
we want to compare tools or processes, when 
we want to check the health of our process 
during the monitoring phase, when we are 
troubleshooting a bad process, or when we 
need to improve a process [3].

A young process engineer is completing a 
process improvement project on her acid 
copper pulse plating tanks, looking to 
improve throwing power. She conducts an 
experiment looking at three different pulse 
recipes. The first pulse recipe (P1) is the 
control (current wave), while recipes P2 and 
P3 are experimental. The test vehicle is an 18” 
x 24” panel with 20:1 aspect ratio holes. The 
engineer plates four panels with each of the 
three pulse recipes and measures the throw-
ing power (Note: the runs are randomized to 
protect against noise variables). The throwing 
power percentages, along with descriptive 
statistics, are shown in Table 4.

The process engineer analyzes the throwing 
power data using an ANOVA. The Recipe 
p-value is less than 0.05, indicating that not 
all means are equal, see Table 5. 

Next, the engineer validates the model by 
examining the residuals. The probability plot 
of the residuals approximately follows a 
straight line. The histogram is ignored due to 
the presence of fewer than 50 data points, 
making interpretation difficult. The residuals 
versus order points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns or trends in the points. The residuals 
versus fit points fall randomly around the 
center line with a mean of zero and constant 
variance NID(0, σ2) with no recognizable 
patterns, trends, or outliers in the points. All 
four plots can be seen in Figure 5. The model 
has been validated. The process engineer now 
needs to use a post hoctest to complete pair-
wise comparisons. 

The process engineer decides to use the Tukey 
post hoc test. She uses the grouping informa-
tion table to quickly determine whether the 
mean difference between any pair of groups is 
statistically significant. Groups that do not 
share a letter are significantly different. In 
these results, Table 6 shows that group A 
contains Recipe P3, group B contains Recipe 
P2, and group C contains Recipe P1.

Table 6. Tukey post hoc test.
Means that do not show a layer 

are signifigantly different.

Recipe N Mean Grouping

P3 4 86 A                 

P2 4 71 B

P1 4  50.75                 C

Discussion: The ANOVA model has been built, 
validated, and a post hoc test completed. The 
process engineer concludes that all three 
Recipe means are statistically different; the 
results in the data are unlikely to be explained 
by chance alone. The data acceptance criteria 
has been met: Equitable Sample (18” x 24” 
panel, 20:1 aspect ratio, four test panels), 
Stability (all parameters were in range during 
the testing), Statistical Significance (P-value < 
0.05, and residuals are normal and inde-
pendently distributed with a mean of zero and 
constant variance NID(0, σ2)), Practical Signifi-
cance (36% improvement in throwing power), 
and Truth (significant modifications to the 
pulse waves improve throwing power). Recipe 
P3 has been statistically proven to improve 
throwing power over Recipe P1 by an average 
of 36% (86% – 50%). The process engineer 
concludes her improvement project's data are 
correct, unambiguous, and defensible. She can 
confidently implement the process change.

Conclusions 
The analysis of variance (ANOVA) is over 100 
years old. Today, the ANOVA is the most 
useful technique in the field of statistical infer-
ence. The ANOVA is designed to allow for 
comparisons between multiple groups using a 
single test. The ANOVA work does not stop 
when the model is fit; the model must be 
validated. Validation is accomplished by verify-
ing that the residuals are normally distributed, 
have independence of observations, and have 
homogeneity of variances. When the ANOVA 
indicates a statistical difference, and the model 
assumptions have been validated, a post-hoc 
test is used to identify which specific groups 
differ from each other. The Tukey test is a 
robust, widely used, and popular post-hoc test. 
Finally, data acceptance is based on five 
requirements: equitable sample, stability, 
statistical significance, practical significance, 
and truth. Drawing conclusions from an 
improvement project's data that are correct, 
unambiguous, and defensible is crucial for the 
process engineer. 
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