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Abstract

Statistical tests are powerful tools that help
process engineers make better decisions on
process improvement projects. Drawing con-
clusions from an improvement project's data
that are correct, unambiguous, and defensible is
crucial for the process engineer. One of the
most common parameters of interest with
improvement projects is the mean. The purpose
of this paper is to go over the appropriate steps
for using the analysis of variance with multiple
mean responses. The analysis of variance is
reviewed, along with model validation and the
key data acceptance criteria required. A worked
example is provided using pulse acid copper
throwing power.
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Introduction

The two-sample t-test is used to determine if two
population means are equal. A typical applica-
tion tests if a new process or treatment is superi-
or to a current one. But what if we have three or
more means we want to test? The t-test is inap-
propriate for this analysis.

For example, a young engineer is testing the
mean brightener concentration in her four acid
copper pulse plating tanks (A, B, C, D). There
are six pairwise comparisons: AB, AC, AD, BC,
BD, CD. Using the t-test, if the probability of

correctly accepting the null hypothesis for each
testis 1 — a = 0.95, then the probability of
correctly accepting the null hypothesis for all six
tests is (0.95)¢ = 0.74, or 74%. In other words, 1 -
0.74 = 26% chance of committing a Type I error.
Recall that a Type I error occurs when we reject
a true null hypothesis (no statistical difference)
and claim that there is a statistical difference. The
multiple comparisons cause a significant increase
in Type I errors. The appropriate procedure for
testing the equality of several means is the analy-
sis of variance [1].

The Analysis of Variance

The analysis of variance (ANOVA) was invent-
ed by British statistician R.A. Fisher in 1918.
While the t-test was limited to comparisons
between two groups, the ANOVA was designed
to allow for comparisons between multiple
groups using a single test. The ANOVA gained
popularity after being included in Fisher’s text,
Statistical Methods for Research Workers,

in 1925.

Today, the ANOVA is the most useful tech-
nique in the field of statistical inference. The
ANOVA is a general linear statistical model
technique used to test the hypothesis that the
means of two or more groups are equal. The
linear function refers to the mathematical
relationship between the model parameters
and the dependent variable (y). Specifically,



the response variable (y) is a linear function of
the model parameters (the average outcome is
linearly related to each term in the model) [2].

There are two types of assumptions with the
ANOVA model. The first assumption is about
the form of the model. These initial assump-
tions pertain to choosing the correct predictors
(they are related to the response variable), and
the average outcome is linearly related to each
term in the model [2, 3].

The second assumption is about the distribu-
tion of the errors (residuals). It is generally
assumed that the sampled populations are
approximately normally distributed, the obser-
vations are independent, the variances are
equal across groups (homogeneity), and the
observations have been randomly sampled.
The ANOVA technique is robust to minor
deviations from normality, independence, and
homogeneity. You can get clues about whether
most of these assumptions will be met before
building the model. But we typically build the
model first and then verify the assumptions.
Suppose you've done the foundational work in
the early steps. In that case, testing assump-
tions is about looking for minor deviations, not
major transgressions [2, 3].

The ANOVA tests the null hypothesis (HO)
that two or more population means are equal
versus the alternative hypothesis (H1) that at
least one mean is different. Using the formal
notation of statistical hypotheses, for k means
we write:

Ho: pl = p2 =...= pk

H;j: At least one mean is not equal
to the others

In statistics, the alternative hypothesis can be
either one-tailed or two-tailed. The one-tailed
tests are for either inferiority or superiority,
while the two-tailed tests are for parity (not
equal). The ANOVA is a bit more complex.

With ANOVA, we test "not all means are
equal.” Suppose we are comparing three
groups; the alternative hypothesis says that at
least one of the following is true:

Mean 1 is not equal to mean 2.
Mean 1 is not equal to mean 3.

Mean 2 is not equal to mean 3.

As implied, the ANOVA analyzes variances to
test means. But why analyze variances to derive
conclusions about the means? Remember that
“means are different.” And the larger the differ-
ences between the means, the more variation
there is present. The ANOVA assesses the
amount of variability between the group means
in the context of the variation within groups to
determine whether the mean differences are
statistically significant. When the ANOVA
signals statistically significant results (p-value

< 0.05), indicating that not all means are equal,
you’ll need to use post hoc tests to complete
pairwise comparisons.

Let’s look at how the ANOVA works by using
an example. Table 1 shows three factors (A, B,
C), with three measured responses per factor,
along with descriptive statistics. The data is
fictitious and is presented for explanatory
purposes only.

. B C
1 4 7
2 5 8
3 6 9
Mean: 2 5 8
Std Dev: 1.0 1.0 1.0

Table 1. Three-factor data set.

A raw ANOVA table is shown in Table 2,
followed by the detailed ANOVA calcula-
tions. Finally, the completed ANOVA is
shown in Table 3.



Source of Degrees of Adj Sum of
Variation Freedom Squares
Factor df e cior SS tactor
Error df oo SS error
Total df iotal SS iotal

Adj Mean
saua,e F-Value P-Value
mMs factor F P
MS error

Table 2. Raw ANOVA table.

Descriptive Statistics

Descriptive statistics, such as the mean and
standard deviation, summarize a set of data
[4, 5].

Meanof A:1+2+3/3=2
MeanofB:4+5+6/3=5
Meanof C:7+8+9/3=8

Grand Mean: 1 +2 +3+4+5+6+7 +
8+9/9=5

Degrees of Freedom

Degrees of freedom (n - 1) are the number of
independent values that a statistical analysis
can estimate; more specifically, they define
how many units within a set can be selected
without constraints. Let’s say we have three
numbers that add up to 12. There are two
degrees of freedom (3 - 1 = 2). After picking
the first two numbers, there is no freedom to
choose the last number; it is "determined" by
the other two numbers. The first and second
numbers can be any positive or negative
numbers. For example, if the first number is
3, the second number is 7, the third number
must be 2 [4, 5].

Factor:3-1=2
Error:8-2=6
Total: 9-1=8

Sum of Squares

The sum of the squared deviations of scores
from their mean. The total sum of squares
helps express the total variation that can be
attributed to various factors. The adjusted
sum of squares is the unique portion of the
sum of squares explained by a factor, given all
other factors in the model, regardless of the
order they were entered into the model [4, 5].

Factor (between the factors): 3* [(2 - 5)* +
(5-5)*> + (8 -5)*] =54. (Note: “3” is the
number of levels within the factors, not the
number of factors, and “5” is the grand mean.)

Error (within the factors):

SSof A: (1 -2)>+(12-2)*+(3-2)*=2
SSofB: (4-5)*+(5-5)+(6-5)*=2
SSof C: (7-8)*+(8-8)*+(9-8)>=2
Error:2+2+2=6

Total: 54 + 6 = 60

Mean Squares

A term used in the analysis of variance to refer
to the variance in the data due to a particular
source of variation. Converting the sum of
squares into mean squares by dividing by the
degrees of freedom lets you compare these
ratios and determine whether there is a



significant difference. The larger this ratio is,
the greater the factor's impact on the outcome
[4, 5].

Factor: 54 /2 =27
Error:6/6=1

F-value

Calculated by dividing the factor mean square
by the error mean square. As an alternative to
calculating the p-value, F-critical can be used.
The F-critical is found in the F-table, using the
degrees of freedom for the factor and error,
F(2, 6). An F-value greater than F-critical
indicates statistical significance [4, 5].

F-value: 27 /1=27
F-critical: 5.14

P-value

The P-value indicates the probability of
observing the given F-value (or a more extreme
value) under the assumption that the null
hypothesis is true. It is calculated from the
F-distribution, F(2, 6), using the F-value [4, 5].

F-value: 27
Probability (p-value) of X > 27, F(2, 6) = 0.001

Source DF AdjSS AdjMS F-Value P-Value
Factor 2 54 27 27 0.001
Error 6 6 1

Total: 8 60

Table 3. Completed ANOVA table.

The ANOVA signals statistically significant
results (P-value < 0.05), indicating that not all
means are equal. But before action is taken,
the model needs to be validated by examining
the residuals. If all looks good, a post hoc test
needs to be conducted for all pairwise com-
parisons. Finally, a review of the five require-
ments for data acceptance is required.

Model Validation

The ANOVA work does not stop when the
model is fit. As discussed previously, the second
assumption is about the distribution of the resid-
uals. If your model is not adequate, it will incor-
rectly represent your data. For example, incor-
rect F- and P-values. Models can be adversely
affected by as few as one or two points [4].

To validate the model, the assumptions about
the distribution of the residuals must be met.
These assumptions include that the residuals are
normally distributed, have independence of
observations (no autocorrelation), and have
homogeneity of variances (equal variances
across groups). Residuals are elements of varia-
tion unexplained by the model. Since they are a
form of error, the same general principles apply
to the group of residuals as would apply to errors
in general: one expects them to be normal and
independently distributed (NID) with a mean of
zero and constant variance NID(0, 0*). Depar-
tures from these assumptions usually mean that
the residuals contain unaccounted-for informa-
tion. Validating the model helps ensure the
conclusions drawn are correct, unambiguous,
and defensible [1, 3].

Normality

Virtually any graph suitable for displaying the
distribution of a set of data is ideal for judging
the normality of the distribution of a group of
residuals. The two most common plots and
graphs are the normal probability plot and the
histogram [3, 4].

Interpretation: The normal probability plot of
the residuals should approximately follow a
straight line, see Figure 1. The histogram helps
identify whether the data are skewed or contain
outliers, as shown in Figure 2. With histograms,
it’s best to have at least 50 data points (n > 50) to
make interpretation robust [4].
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Figure 1. A reasonable probability plot.
Independence

Suppose the order of the observations in a data
table represents the order of execution of each
test. In that case, a plot of the residuals of those
observations versus the time order of the
observations will test for lack of independence.
For example, drift in equipment will produce
models with autocorrelation. [3, 4].

Interpretation: Independent residuals show no
trends or patterns when displayed in time
order. Patterns in the data points indicate that
residuals near each other may be correlated
and thus not independent. The residuals on the
plot should fall randomly around the center
line with a mean of zero and constant variance
NID(0, 0*) with no recognizable patterns or
trends in the points, see Figure 3 [4].
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Figure 3. A reasonable residuals
versus time order plot.
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Figure 2. A reasonable histogram.

Homogeneity

Plotting residuals versus the value of a fitted
response should produce a distribution of
points scattered randomly about zero, NID
(0, 0%), regardless of the size of the fitted
value. Quite commonly, however, residual
values may increase as the size of the fitted
value increases. When this happens, the
residual cloud becomes "funnel-shaped" with
the larger end toward larger fitted values; that
is, the residuals have larger and larger scatter
as the value of the response increases [3, 4].

Interpretation: Ideally, the points should fall
randomly around the center line with a mean
of zero and constant variance NID(0, 0?) with
no recognizable patterns, trends, or outliers
in the points, see Figure 4 [4].
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Figure 4. A reasonable residuals
versus fits plot.



Post-hoc Testing

Suppose the ANOVA indicates a statistical
difference (p-value < 0.05), and the model
assumptions have been validated. In that case,
post-hoc tests are used to identify which
specific groups differ from each other. Stan-
dard post-hoc tests include Tukey, Fisher,
Dunnett, and Hsu MCB. The Tukey and
Fisher tests compare all pairs of groups. The
Dunnett test compares the treatment groups
to a control group. In contrast, the Hsu MCB
test compares each group to the group with
either the largest or the smallest mean (cho-
sen by the process engineer). The process
engineer must consider individual and family
error rates in conjunction with post-hoc
testing [4].

The individual error rate is the maximum
probability that one or more comparisons will
incorrectly conclude that the observed differ-
ence is significantly different from the null
hypothesis. It is equivalent to the alpha level
selected (typically 0.05) for the hypothesis
test. The family error rate is the maximum
probability that a procedure consisting of
more than one comparison will incorrectly
conclude that at least one of the observed
differences is significantly different from the
null hypothesis. The family error rate is based
on both the individual error rate and the
number of comparisons. It is essential to
consider the family error rate when making
multiple comparisons because your chances
of committing a Type I error for a series of
comparisons are greater than the error rate
for any one comparison alone [4].

The Tukey test is a robust, widely used, and
popular post-hoc test. It compares all pairs of
groups while controlling the simultaneous
confidence level (SCL). The SCL is the

percentage of times that a group of confi-
dence intervals will all include the true popu-
lation parameters or true differences between
factor levels if the study were repeated multi-
ple times. The SCL level is based on both the
individual confidence level and the number of
confidence intervals. The Tukey family error
rate is typically controlled at 0.05 (5%). The
trade-off with Tukey's is the less precise
confidence intervals and hypothesis tests that
are less powerful than either Dunnett's or
Hsu's MCB [4, 6].

Data Acceptance

There are five requirements if conclusions
drawn from data analysis are to be correct,
unambiguous, and defensible. These five
requirements are an equitable sample, stabili-
ty, statistical significance, practical signifi-
cance, and truth. Each of these is discussed
below.

Equitable Sample: The sample is representa-
tive of the population. Free from bias and
confounding. Sample size is sufficient, or
confirmation runs have been done.

Stability: No unusual conditions when the
data was collected. No outliers, trends, shifts,
or non-random patterns.

Statistically Significant: p-values are real, not
noise, typically a < 0.05, and residuals are
normal.

Practical Significance: Is the magnitude of
difference worthwhile? Does anybody care?

Truth: Can you explain why it is true? Do
you have a theory? Does the conclusion fit
with the subject matter knowledge?



A Worked Example

Process characterization is an integral part of The process engineer analyzes the throwing
any continuous improvement program. There power data using an ANOVA. The Recipe
are many steps in that program for which p-value is less than 0.05, indicating that not
process characterization is required. These all means are equal, see Table 5.

include instances when we introduce a new

process or tool for use, as well as when we
bring a tool or process back online after :

scheduled/unscheduled maintenance, when Recipe 2  2503.5 1251.75 65.98 0.000
we want to compare tools or processes, when Error 9 1707 8.97

we want to check the health of our process Total 11 2647.2
during the monitoring phase, when we are
troubleshooting a bad process, or when we
need to improve a process [3]. Next, the engineer validates the model by
examining the residuals. The probability plot
of the residuals approximately follows a
straight line. The histogram is ignored due to
the presence of fewer than 50 data points,
making interpretation difficult. The residuals
versus order points fall randomly around the
center line with a mean of zero and constant
variance NID(0, 0*) with no recognizable
patterns or trends in the points. The residuals
versus fit points fall randomly around the
center line with a mean of zero and constant
variance NID(0, 0*) with no recognizable
patterns, trends, or outliers in the points. All
four plots can be seen in Figure 5. The model
has been validated. The process engineer now
needs to use a post hoctest to complete pair-
wise comparisons.

Table 5. Pulse recipe ANOVA.

A young process engineer is completing a
process improvement project on her acid
copper pulse plating tanks, looking to
improve throwing power. She conducts an
experiment looking at three different pulse
recipes. The first pulse recipe (P1) is the
control (current wave), while recipes P2 and
P3 are experimental. The test vehicle is an 18”
x 24” panel with 20:1 aspect ratio holes. The
engineer plates four panels with each of the
three pulse recipes and measures the throw-
ing power (Note: the runs are randomized to
protect against noise variables). The throwing
power percentages, along with descriptive
statistics, are shown in Table 4.

Recipe P1 RecipeP2 RecipeP3 Residual Plots for T.P.
oty -
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Table 4. Throwing power percentages
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Figure 5. Four-in-one residual plot.



The process engineer decides to use the Tukey
post hoc test. She uses the grouping informa-
tion table to quickly determine whether the
mean difference between any pair of groups is
statistically significant. Groups that do not
share a letter are significantly different. In
these results, Table 6 shows that group A
contains Recipe P3, group B contains Recipe
P2, and group C contains Recipe P1.

Recipe N Mean Grouping
P3 4 86 A

P2 4 71 B

P1 4 50.75 C

Table 6. Tukey post hoc test.

Means that do not show a layer
are signifigantly different.

Discussion: The ANOVA model has been built,
validated, and a post hoc test completed. The
process engineer concludes that all three
Recipe means are statistically different; the
results in the data are unlikely to be explained
by chance alone. The data acceptance criteria
has been met: Equitable Sample (18” x 24”
panel, 20:1 aspect ratio, four test panels),
Stability (all parameters were in range during
the testing), Statistical Significance (P-value <
0.05, and residuals are normal and inde-
pendently distributed with a mean of zero and
constant variance NID(0, 0%)), Practical Signifi-
cance (36% improvement in throwing power),
and Truth (significant modifications to the
pulse waves improve throwing power). Recipe
P3 has been statistically proven to improve
throwing power over Recipe P1 by an average
0f 36% (86% — 50%). The process engineer
concludes her improvement project's data are
correct, unambiguous, and defensible. She can
confidently implement the process change.

Conclusions

The analysis of variance (ANOVA) is over 100
years old. Today, the ANOVA is the most
useful technique in the field of statistical infer-
ence. The ANOVA is designed to allow for
comparisons between multiple groups using a
single test. The ANOVA work does not stop
when the model is fit; the model must be
validated. Validation is accomplished by verify-
ing that the residuals are normally distributed,
have independence of observations, and have
homogeneity of variances. When the ANOVA
indicates a statistical difference, and the model
assumptions have been validated, a post-hoc
test is used to identify which specific groups
differ from each other. The Tukey test is a
robust, widely used, and popular post-hoc test.
Finally, data acceptance is based on five
requirements: equitable sample, stability,
statistical significance, practical significance,
and truth. Drawing conclusions from an
improvement project's data that are correct,
unambiguous, and defensible is crucial for the
process engineer.

References

[1] Montgomery, D. (2001). Design and Analysis of
Experiments, Sth Ed. United States: John Wiley &
Sons.

[2] The Analysis Factor: When to Check Model Assump-
tions. Available from: https://www.theanalysisfac-
tor.com/when-to-check-model-assumptions/
(accessed 2 June 2025).

[3] NIST Engineering Statistics Handbook. (2012).
http://www.itL.nist.gov/div898/handbook/

[4] Minitab software.

[5] Hinton, P. (2004). Statistics Explained, 2nd Ed.
London, England: Routledge.

[6] Nanda, A., et al. (2021). Multiple comparison test by
Tukey’s honestly significant difference (HSD): Do the
confident level control type I error. International
Journal of Statistics and Applied Mathematics; 6(1):
59-65.



Biography

Patrick Valentine Technical and Lean Six Sigma Manager for Uyemura USA (uyemura.com).

He holds a Doctorate Degree in Quality Systems Management from Cambridge College, a Six
Sigma Master Black Belt certification from Arizona State University, and ASQ certifications as a

Six Sigma Black Belt and Reliability Engineer.

OUYEMURR  wvomrecer

. . Corporate Headquarters:
International Corporation (909) 466-5635

Tech Center:
(860) 793-4011

PValentineQuyemura.com



https://www.uyemura.com/
https://www.uyemura.com/

